Aromātai
-\frac{1}{3}\approx -0.333333333
Tauwehe
-\frac{1}{3} = -0.3333333333333333
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(3\times 15+7\right)\times 12}{15\left(1\times 12+1\right)}-\frac{3\times 15+8}{15}
Whakawehe \frac{3\times 15+7}{15} ki te \frac{1\times 12+1}{12} mā te whakarea \frac{3\times 15+7}{15} ki te tau huripoki o \frac{1\times 12+1}{12}.
\frac{4\left(7+3\times 15\right)}{5\left(1+12\right)}-\frac{3\times 15+8}{15}
Me whakakore tahi te 3 i te taurunga me te tauraro.
\frac{4\left(7+45\right)}{5\left(1+12\right)}-\frac{3\times 15+8}{15}
Whakareatia te 3 ki te 15, ka 45.
\frac{4\times 52}{5\left(1+12\right)}-\frac{3\times 15+8}{15}
Tāpirihia te 7 ki te 45, ka 52.
\frac{208}{5\left(1+12\right)}-\frac{3\times 15+8}{15}
Whakareatia te 4 ki te 52, ka 208.
\frac{208}{5\times 13}-\frac{3\times 15+8}{15}
Tāpirihia te 1 ki te 12, ka 13.
\frac{208}{65}-\frac{3\times 15+8}{15}
Whakareatia te 5 ki te 13, ka 65.
\frac{16}{5}-\frac{3\times 15+8}{15}
Whakahekea te hautanga \frac{208}{65} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 13.
\frac{16}{5}-\frac{45+8}{15}
Whakareatia te 3 ki te 15, ka 45.
\frac{16}{5}-\frac{53}{15}
Tāpirihia te 45 ki te 8, ka 53.
\frac{48}{15}-\frac{53}{15}
Ko te maha noa iti rawa atu o 5 me 15 ko 15. Me tahuri \frac{16}{5} me \frac{53}{15} ki te hautau me te tautūnga 15.
\frac{48-53}{15}
Tā te mea he rite te tauraro o \frac{48}{15} me \frac{53}{15}, me tango rāua mā te tango i ō raua taurunga.
\frac{-5}{15}
Tangohia te 53 i te 48, ka -5.
-\frac{1}{3}
Whakahekea te hautanga \frac{-5}{15} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}