Aromātai
\frac{37}{6}\approx 6.166666667
Tauwehe
\frac{37}{2 \cdot 3} = 6\frac{1}{6} = 6.166666666666667
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
3 \frac { 7 } { 12 } - \frac { 1 } { 6 } + 2 \frac { 3 } { 4 }
Tohaina
Kua tāruatia ki te papatopenga
\frac{36+7}{12}-\frac{1}{6}+\frac{2\times 4+3}{4}
Whakareatia te 3 ki te 12, ka 36.
\frac{43}{12}-\frac{1}{6}+\frac{2\times 4+3}{4}
Tāpirihia te 36 ki te 7, ka 43.
\frac{43}{12}-\frac{2}{12}+\frac{2\times 4+3}{4}
Ko te maha noa iti rawa atu o 12 me 6 ko 12. Me tahuri \frac{43}{12} me \frac{1}{6} ki te hautau me te tautūnga 12.
\frac{43-2}{12}+\frac{2\times 4+3}{4}
Tā te mea he rite te tauraro o \frac{43}{12} me \frac{2}{12}, me tango rāua mā te tango i ō raua taurunga.
\frac{41}{12}+\frac{2\times 4+3}{4}
Tangohia te 2 i te 43, ka 41.
\frac{41}{12}+\frac{8+3}{4}
Whakareatia te 2 ki te 4, ka 8.
\frac{41}{12}+\frac{11}{4}
Tāpirihia te 8 ki te 3, ka 11.
\frac{41}{12}+\frac{33}{12}
Ko te maha noa iti rawa atu o 12 me 4 ko 12. Me tahuri \frac{41}{12} me \frac{11}{4} ki te hautau me te tautūnga 12.
\frac{41+33}{12}
Tā te mea he rite te tauraro o \frac{41}{12} me \frac{33}{12}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{74}{12}
Tāpirihia te 41 ki te 33, ka 74.
\frac{37}{6}
Whakahekea te hautanga \frac{74}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}