Aromātai
\frac{53}{24}\approx 2.208333333
Tauwehe
\frac{53}{2 ^ {3} \cdot 3} = 2\frac{5}{24} = 2.2083333333333335
Tohaina
Kua tāruatia ki te papatopenga
\frac{18+5}{6}+\frac{4\times 4+3}{4}-5-\frac{1\times 8+3}{8}
Whakareatia te 3 ki te 6, ka 18.
\frac{23}{6}+\frac{4\times 4+3}{4}-5-\frac{1\times 8+3}{8}
Tāpirihia te 18 ki te 5, ka 23.
\frac{23}{6}+\frac{16+3}{4}-5-\frac{1\times 8+3}{8}
Whakareatia te 4 ki te 4, ka 16.
\frac{23}{6}+\frac{19}{4}-5-\frac{1\times 8+3}{8}
Tāpirihia te 16 ki te 3, ka 19.
\frac{46}{12}+\frac{57}{12}-5-\frac{1\times 8+3}{8}
Ko te maha noa iti rawa atu o 6 me 4 ko 12. Me tahuri \frac{23}{6} me \frac{19}{4} ki te hautau me te tautūnga 12.
\frac{46+57}{12}-5-\frac{1\times 8+3}{8}
Tā te mea he rite te tauraro o \frac{46}{12} me \frac{57}{12}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{103}{12}-5-\frac{1\times 8+3}{8}
Tāpirihia te 46 ki te 57, ka 103.
\frac{103}{12}-\frac{60}{12}-\frac{1\times 8+3}{8}
Me tahuri te 5 ki te hautau \frac{60}{12}.
\frac{103-60}{12}-\frac{1\times 8+3}{8}
Tā te mea he rite te tauraro o \frac{103}{12} me \frac{60}{12}, me tango rāua mā te tango i ō raua taurunga.
\frac{43}{12}-\frac{1\times 8+3}{8}
Tangohia te 60 i te 103, ka 43.
\frac{43}{12}-\frac{8+3}{8}
Whakareatia te 1 ki te 8, ka 8.
\frac{43}{12}-\frac{11}{8}
Tāpirihia te 8 ki te 3, ka 11.
\frac{86}{24}-\frac{33}{24}
Ko te maha noa iti rawa atu o 12 me 8 ko 24. Me tahuri \frac{43}{12} me \frac{11}{8} ki te hautau me te tautūnga 24.
\frac{86-33}{24}
Tā te mea he rite te tauraro o \frac{86}{24} me \frac{33}{24}, me tango rāua mā te tango i ō raua taurunga.
\frac{53}{24}
Tangohia te 33 i te 86, ka 53.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}