Aromātai
\frac{74}{15}\approx 4.933333333
Tauwehe
\frac{2 \cdot 37}{3 \cdot 5} = 4\frac{14}{15} = 4.933333333333334
Tohaina
Kua tāruatia ki te papatopenga
\frac{45+4}{15}\times \frac{5}{7}+2.6
Whakareatia te 3 ki te 15, ka 45.
\frac{49}{15}\times \frac{5}{7}+2.6
Tāpirihia te 45 ki te 4, ka 49.
\frac{49\times 5}{15\times 7}+2.6
Me whakarea te \frac{49}{15} ki te \frac{5}{7} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{245}{105}+2.6
Mahia ngā whakarea i roto i te hautanga \frac{49\times 5}{15\times 7}.
\frac{7}{3}+2.6
Whakahekea te hautanga \frac{245}{105} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 35.
\frac{7}{3}+\frac{13}{5}
Me tahuri ki tau ā-ira 2.6 ki te hautau \frac{26}{10}. Whakahekea te hautanga \frac{26}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{35}{15}+\frac{39}{15}
Ko te maha noa iti rawa atu o 3 me 5 ko 15. Me tahuri \frac{7}{3} me \frac{13}{5} ki te hautau me te tautūnga 15.
\frac{35+39}{15}
Tā te mea he rite te tauraro o \frac{35}{15} me \frac{39}{15}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{74}{15}
Tāpirihia te 35 ki te 39, ka 74.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}