Whakaoti mō y
y = \frac{365}{204} = 1\frac{161}{204} \approx 1.789215686
Graph
Tohaina
Kua tāruatia ki te papatopenga
12\left(3\times 5+2\right)y+15\left(1\times 4+1\right)=20\left(7\times 3+1\right)
Me whakarea ngā taha e rua o te whārite ki te 60, arā, te tauraro pātahi he tino iti rawa te kitea o 5,4,3.
12\left(15+2\right)y+15\left(1\times 4+1\right)=20\left(7\times 3+1\right)
Whakareatia te 3 ki te 5, ka 15.
12\times 17y+15\left(1\times 4+1\right)=20\left(7\times 3+1\right)
Tāpirihia te 15 ki te 2, ka 17.
204y+15\left(1\times 4+1\right)=20\left(7\times 3+1\right)
Whakareatia te 12 ki te 17, ka 204.
204y+15\left(4+1\right)=20\left(7\times 3+1\right)
Whakareatia te 1 ki te 4, ka 4.
204y+15\times 5=20\left(7\times 3+1\right)
Tāpirihia te 4 ki te 1, ka 5.
204y+75=20\left(7\times 3+1\right)
Whakareatia te 15 ki te 5, ka 75.
204y+75=20\left(21+1\right)
Whakareatia te 7 ki te 3, ka 21.
204y+75=20\times 22
Tāpirihia te 21 ki te 1, ka 22.
204y+75=440
Whakareatia te 20 ki te 22, ka 440.
204y=440-75
Tangohia te 75 mai i ngā taha e rua.
204y=365
Tangohia te 75 i te 440, ka 365.
y=\frac{365}{204}
Whakawehea ngā taha e rua ki te 204.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}