Manatoko
teka
Tohaina
Kua tāruatia ki te papatopenga
2\times \frac{3\times 5+2}{5}=6\times 5+4
Whakareatia ngā taha e rua o te whārite ki te 5.
2\times \frac{15+2}{5}=6\times 5+4
Whakareatia te 3 ki te 5, ka 15.
2\times \frac{17}{5}=6\times 5+4
Tāpirihia te 15 ki te 2, ka 17.
\frac{2\times 17}{5}=6\times 5+4
Tuhia te 2\times \frac{17}{5} hei hautanga kotahi.
\frac{34}{5}=6\times 5+4
Whakareatia te 2 ki te 17, ka 34.
\frac{34}{5}=30+4
Whakareatia te 6 ki te 5, ka 30.
\frac{34}{5}=34
Tāpirihia te 30 ki te 4, ka 34.
\frac{34}{5}=\frac{170}{5}
Me tahuri te 34 ki te hautau \frac{170}{5}.
\text{false}
Whakatauritea te \frac{34}{5} me te \frac{170}{5}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}