Aromātai
\frac{22}{5}=4.4
Tauwehe
\frac{2 \cdot 11}{5} = 4\frac{2}{5} = 4.4
Tohaina
Kua tāruatia ki te papatopenga
\frac{15+2}{5}+\frac{\frac{2\times 35+2}{35}}{\frac{1\times 25+11}{25}}-\frac{3}{7}
Whakareatia te 3 ki te 5, ka 15.
\frac{17}{5}+\frac{\frac{2\times 35+2}{35}}{\frac{1\times 25+11}{25}}-\frac{3}{7}
Tāpirihia te 15 ki te 2, ka 17.
\frac{17}{5}+\frac{\left(2\times 35+2\right)\times 25}{35\left(1\times 25+11\right)}-\frac{3}{7}
Whakawehe \frac{2\times 35+2}{35} ki te \frac{1\times 25+11}{25} mā te whakarea \frac{2\times 35+2}{35} ki te tau huripoki o \frac{1\times 25+11}{25}.
\frac{17}{5}+\frac{5\left(2+2\times 35\right)}{7\left(11+25\right)}-\frac{3}{7}
Me whakakore tahi te 5 i te taurunga me te tauraro.
\frac{17}{5}+\frac{5\left(2+70\right)}{7\left(11+25\right)}-\frac{3}{7}
Whakareatia te 2 ki te 35, ka 70.
\frac{17}{5}+\frac{5\times 72}{7\left(11+25\right)}-\frac{3}{7}
Tāpirihia te 2 ki te 70, ka 72.
\frac{17}{5}+\frac{360}{7\left(11+25\right)}-\frac{3}{7}
Whakareatia te 5 ki te 72, ka 360.
\frac{17}{5}+\frac{360}{7\times 36}-\frac{3}{7}
Tāpirihia te 11 ki te 25, ka 36.
\frac{17}{5}+\frac{360}{252}-\frac{3}{7}
Whakareatia te 7 ki te 36, ka 252.
\frac{17}{5}+\frac{10}{7}-\frac{3}{7}
Whakahekea te hautanga \frac{360}{252} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 36.
\frac{119}{35}+\frac{50}{35}-\frac{3}{7}
Ko te maha noa iti rawa atu o 5 me 7 ko 35. Me tahuri \frac{17}{5} me \frac{10}{7} ki te hautau me te tautūnga 35.
\frac{119+50}{35}-\frac{3}{7}
Tā te mea he rite te tauraro o \frac{119}{35} me \frac{50}{35}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{169}{35}-\frac{3}{7}
Tāpirihia te 119 ki te 50, ka 169.
\frac{169}{35}-\frac{15}{35}
Ko te maha noa iti rawa atu o 35 me 7 ko 35. Me tahuri \frac{169}{35} me \frac{3}{7} ki te hautau me te tautūnga 35.
\frac{169-15}{35}
Tā te mea he rite te tauraro o \frac{169}{35} me \frac{15}{35}, me tango rāua mā te tango i ō raua taurunga.
\frac{154}{35}
Tangohia te 15 i te 169, ka 154.
\frac{22}{5}
Whakahekea te hautanga \frac{154}{35} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 7.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}