Aromātai
\frac{137}{88}\approx 1.556818182
Tauwehe
\frac{137}{2 ^ {3} \cdot 11} = 1\frac{49}{88} = 1.5568181818181819
Tohaina
Kua tāruatia ki te papatopenga
\frac{33+2}{11}-\frac{1\times 8+5}{8}
Whakareatia te 3 ki te 11, ka 33.
\frac{35}{11}-\frac{1\times 8+5}{8}
Tāpirihia te 33 ki te 2, ka 35.
\frac{35}{11}-\frac{8+5}{8}
Whakareatia te 1 ki te 8, ka 8.
\frac{35}{11}-\frac{13}{8}
Tāpirihia te 8 ki te 5, ka 13.
\frac{280}{88}-\frac{143}{88}
Ko te maha noa iti rawa atu o 11 me 8 ko 88. Me tahuri \frac{35}{11} me \frac{13}{8} ki te hautau me te tautūnga 88.
\frac{280-143}{88}
Tā te mea he rite te tauraro o \frac{280}{88} me \frac{143}{88}, me tango rāua mā te tango i ō raua taurunga.
\frac{137}{88}
Tangohia te 143 i te 280, ka 137.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}