Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{18+1}{6}-\frac{5}{12}\times 2-\frac{1\times 3+1}{3}
Whakareatia te 3 ki te 6, ka 18.
\frac{19}{6}-\frac{5}{12}\times 2-\frac{1\times 3+1}{3}
Tāpirihia te 18 ki te 1, ka 19.
\frac{19}{6}-\frac{5\times 2}{12}-\frac{1\times 3+1}{3}
Tuhia te \frac{5}{12}\times 2 hei hautanga kotahi.
\frac{19}{6}-\frac{10}{12}-\frac{1\times 3+1}{3}
Whakareatia te 5 ki te 2, ka 10.
\frac{19}{6}-\frac{5}{6}-\frac{1\times 3+1}{3}
Whakahekea te hautanga \frac{10}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{19-5}{6}-\frac{1\times 3+1}{3}
Tā te mea he rite te tauraro o \frac{19}{6} me \frac{5}{6}, me tango rāua mā te tango i ō raua taurunga.
\frac{14}{6}-\frac{1\times 3+1}{3}
Tangohia te 5 i te 19, ka 14.
\frac{7}{3}-\frac{1\times 3+1}{3}
Whakahekea te hautanga \frac{14}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{7}{3}-\frac{3+1}{3}
Whakareatia te 1 ki te 3, ka 3.
\frac{7}{3}-\frac{4}{3}
Tāpirihia te 3 ki te 1, ka 4.
\frac{7-4}{3}
Tā te mea he rite te tauraro o \frac{7}{3} me \frac{4}{3}, me tango rāua mā te tango i ō raua taurunga.
\frac{3}{3}
Tangohia te 4 i te 7, ka 3.
1
Whakawehea te 3 ki te 3, kia riro ko 1.