Aromātai
1
Tauwehe
1
Tohaina
Kua tāruatia ki te papatopenga
\frac{18+1}{6}-\frac{5}{12}\times 2-\frac{1\times 3+1}{3}
Whakareatia te 3 ki te 6, ka 18.
\frac{19}{6}-\frac{5}{12}\times 2-\frac{1\times 3+1}{3}
Tāpirihia te 18 ki te 1, ka 19.
\frac{19}{6}-\frac{5\times 2}{12}-\frac{1\times 3+1}{3}
Tuhia te \frac{5}{12}\times 2 hei hautanga kotahi.
\frac{19}{6}-\frac{10}{12}-\frac{1\times 3+1}{3}
Whakareatia te 5 ki te 2, ka 10.
\frac{19}{6}-\frac{5}{6}-\frac{1\times 3+1}{3}
Whakahekea te hautanga \frac{10}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{19-5}{6}-\frac{1\times 3+1}{3}
Tā te mea he rite te tauraro o \frac{19}{6} me \frac{5}{6}, me tango rāua mā te tango i ō raua taurunga.
\frac{14}{6}-\frac{1\times 3+1}{3}
Tangohia te 5 i te 19, ka 14.
\frac{7}{3}-\frac{1\times 3+1}{3}
Whakahekea te hautanga \frac{14}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{7}{3}-\frac{3+1}{3}
Whakareatia te 1 ki te 3, ka 3.
\frac{7}{3}-\frac{4}{3}
Tāpirihia te 3 ki te 1, ka 4.
\frac{7-4}{3}
Tā te mea he rite te tauraro o \frac{7}{3} me \frac{4}{3}, me tango rāua mā te tango i ō raua taurunga.
\frac{3}{3}
Tangohia te 4 i te 7, ka 3.
1
Whakawehea te 3 ki te 3, kia riro ko 1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}