3 \frac { 1 } { 5 } cm \frac { 11 } { 100 } m \frac { 7 } { 10 } dm
Aromātai
\frac{154cdm^{3}}{625}
Whakaroha
\frac{154cdm^{3}}{625}
Pātaitai
5 raruraru e ōrite ana ki:
3 \frac { 1 } { 5 } cm \frac { 11 } { 100 } m \frac { 7 } { 10 } dm
Tohaina
Kua tāruatia ki te papatopenga
\frac{3\times 5+1}{5}cm^{2}\times \frac{11}{100}\times \frac{7}{10}dm
Whakareatia te m ki te m, ka m^{2}.
\frac{3\times 5+1}{5}cm^{3}\times \frac{11}{100}\times \frac{7}{10}d
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 2 me te 1 kia riro ai te 3.
\frac{15+1}{5}cm^{3}\times \frac{11}{100}\times \frac{7}{10}d
Whakareatia te 3 ki te 5, ka 15.
\frac{16}{5}cm^{3}\times \frac{11}{100}\times \frac{7}{10}d
Tāpirihia te 15 ki te 1, ka 16.
\frac{16\times 11}{5\times 100}cm^{3}\times \frac{7}{10}d
Me whakarea te \frac{16}{5} ki te \frac{11}{100} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{176}{500}cm^{3}\times \frac{7}{10}d
Mahia ngā whakarea i roto i te hautanga \frac{16\times 11}{5\times 100}.
\frac{44}{125}cm^{3}\times \frac{7}{10}d
Whakahekea te hautanga \frac{176}{500} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{44\times 7}{125\times 10}cm^{3}d
Me whakarea te \frac{44}{125} ki te \frac{7}{10} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{308}{1250}cm^{3}d
Mahia ngā whakarea i roto i te hautanga \frac{44\times 7}{125\times 10}.
\frac{154}{625}cm^{3}d
Whakahekea te hautanga \frac{308}{1250} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{3\times 5+1}{5}cm^{2}\times \frac{11}{100}\times \frac{7}{10}dm
Whakareatia te m ki te m, ka m^{2}.
\frac{3\times 5+1}{5}cm^{3}\times \frac{11}{100}\times \frac{7}{10}d
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 2 me te 1 kia riro ai te 3.
\frac{15+1}{5}cm^{3}\times \frac{11}{100}\times \frac{7}{10}d
Whakareatia te 3 ki te 5, ka 15.
\frac{16}{5}cm^{3}\times \frac{11}{100}\times \frac{7}{10}d
Tāpirihia te 15 ki te 1, ka 16.
\frac{16\times 11}{5\times 100}cm^{3}\times \frac{7}{10}d
Me whakarea te \frac{16}{5} ki te \frac{11}{100} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{176}{500}cm^{3}\times \frac{7}{10}d
Mahia ngā whakarea i roto i te hautanga \frac{16\times 11}{5\times 100}.
\frac{44}{125}cm^{3}\times \frac{7}{10}d
Whakahekea te hautanga \frac{176}{500} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{44\times 7}{125\times 10}cm^{3}d
Me whakarea te \frac{44}{125} ki te \frac{7}{10} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{308}{1250}cm^{3}d
Mahia ngā whakarea i roto i te hautanga \frac{44\times 7}{125\times 10}.
\frac{154}{625}cm^{3}d
Whakahekea te hautanga \frac{308}{1250} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}