Aromātai
1.28
Tauwehe
\frac{2 ^ {5}}{5 ^ {2}} = 1\frac{7}{25} = 1.28
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{15+1}{5}\times 0.48}{1.2}
Whakareatia te 3 ki te 5, ka 15.
\frac{\frac{16}{5}\times 0.48}{1.2}
Tāpirihia te 15 ki te 1, ka 16.
\frac{\frac{16}{5}\times \frac{12}{25}}{1.2}
Me tahuri ki tau ā-ira 0.48 ki te hautau \frac{48}{100}. Whakahekea te hautanga \frac{48}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{\frac{16\times 12}{5\times 25}}{1.2}
Me whakarea te \frac{16}{5} ki te \frac{12}{25} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\frac{192}{125}}{1.2}
Mahia ngā whakarea i roto i te hautanga \frac{16\times 12}{5\times 25}.
\frac{192}{125\times 1.2}
Tuhia te \frac{\frac{192}{125}}{1.2} hei hautanga kotahi.
\frac{192}{150}
Whakareatia te 125 ki te 1.2, ka 150.
\frac{32}{25}
Whakahekea te hautanga \frac{192}{150} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}