Aromātai
\frac{451}{25}=18.04
Tauwehe
\frac{11 \cdot 41}{5 ^ {2}} = 18\frac{1}{25} = 18.04
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
3 \frac { 1 } { 3 } \times 5 \frac { 2 } { 5 } + 25 \div 625
Tohaina
Kua tāruatia ki te papatopenga
\frac{9+1}{3}\times \frac{5\times 5+2}{5}+\frac{25}{625}
Whakareatia te 3 ki te 3, ka 9.
\frac{10}{3}\times \frac{5\times 5+2}{5}+\frac{25}{625}
Tāpirihia te 9 ki te 1, ka 10.
\frac{10}{3}\times \frac{25+2}{5}+\frac{25}{625}
Whakareatia te 5 ki te 5, ka 25.
\frac{10}{3}\times \frac{27}{5}+\frac{25}{625}
Tāpirihia te 25 ki te 2, ka 27.
\frac{10\times 27}{3\times 5}+\frac{25}{625}
Me whakarea te \frac{10}{3} ki te \frac{27}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{270}{15}+\frac{25}{625}
Mahia ngā whakarea i roto i te hautanga \frac{10\times 27}{3\times 5}.
18+\frac{25}{625}
Whakawehea te 270 ki te 15, kia riro ko 18.
18+\frac{1}{25}
Whakahekea te hautanga \frac{25}{625} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 25.
\frac{450}{25}+\frac{1}{25}
Me tahuri te 18 ki te hautau \frac{450}{25}.
\frac{450+1}{25}
Tā te mea he rite te tauraro o \frac{450}{25} me \frac{1}{25}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{451}{25}
Tāpirihia te 450 ki te 1, ka 451.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}