Manatoko
teka
Tohaina
Kua tāruatia ki te papatopenga
2\left(3\times 2+1\right)\times \frac{1}{2}=3\times 4+1
Me whakarea ngā taha e rua o te whārite ki te 4, arā, te tauraro pātahi he tino iti rawa te kitea o 2,4.
2\left(6+1\right)\times \frac{1}{2}=3\times 4+1
Whakareatia te 3 ki te 2, ka 6.
2\times 7\times \frac{1}{2}=3\times 4+1
Tāpirihia te 6 ki te 1, ka 7.
14\times \frac{1}{2}=3\times 4+1
Whakareatia te 2 ki te 7, ka 14.
\frac{14}{2}=3\times 4+1
Whakareatia te 14 ki te \frac{1}{2}, ka \frac{14}{2}.
7=3\times 4+1
Whakawehea te 14 ki te 2, kia riro ko 7.
7=12+1
Whakareatia te 3 ki te 4, ka 12.
7=13
Tāpirihia te 12 ki te 1, ka 13.
\text{false}
Whakatauritea te 7 me te 13.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}