Aromātai
\frac{14}{5}=2.8
Tauwehe
\frac{2 \cdot 7}{5} = 2\frac{4}{5} = 2.8
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(3\times 2+1\right)\times 4}{2\left(1\times 4+1\right)}
Whakawehe \frac{3\times 2+1}{2} ki te \frac{1\times 4+1}{4} mā te whakarea \frac{3\times 2+1}{2} ki te tau huripoki o \frac{1\times 4+1}{4}.
\frac{2\left(1+2\times 3\right)}{1+4}
Me whakakore tahi te 2 i te taurunga me te tauraro.
\frac{2\left(1+6\right)}{1+4}
Whakareatia te 2 ki te 3, ka 6.
\frac{2\times 7}{1+4}
Tāpirihia te 1 ki te 6, ka 7.
\frac{14}{1+4}
Whakareatia te 2 ki te 7, ka 14.
\frac{14}{5}
Tāpirihia te 1 ki te 4, ka 5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}