Aromātai
\frac{57}{110}\approx 0.518181818
Tauwehe
\frac{3 \cdot 19}{2 \cdot 5 \cdot 11} = 0.5181818181818182
Tohaina
Kua tāruatia ki te papatopenga
\frac{330+1}{110}-\left(\frac{2\times 110+23}{110}+\frac{31}{110}\right)
Whakareatia te 3 ki te 110, ka 330.
\frac{331}{110}-\left(\frac{2\times 110+23}{110}+\frac{31}{110}\right)
Tāpirihia te 330 ki te 1, ka 331.
\frac{331}{110}-\left(\frac{220+23}{110}+\frac{31}{110}\right)
Whakareatia te 2 ki te 110, ka 220.
\frac{331}{110}-\left(\frac{243}{110}+\frac{31}{110}\right)
Tāpirihia te 220 ki te 23, ka 243.
\frac{331}{110}-\frac{243+31}{110}
Tā te mea he rite te tauraro o \frac{243}{110} me \frac{31}{110}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{331}{110}-\frac{274}{110}
Tāpirihia te 243 ki te 31, ka 274.
\frac{331-274}{110}
Tā te mea he rite te tauraro o \frac{331}{110} me \frac{274}{110}, me tango rāua mā te tango i ō raua taurunga.
\frac{57}{110}
Tangohia te 274 i te 331, ka 57.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}