Aromātai
195
Tauwehe
3\times 5\times 13
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
3 \cdot 8 ^ { 2 } + 6 \cdot 5 ^ { 2 } - 3 \cdot 7 ^ { 2 } =
Tohaina
Kua tāruatia ki te papatopenga
3\times 64+6\times 5^{2}-3\times 7^{2}
Tātaihia te 8 mā te pū o 2, kia riro ko 64.
192+6\times 5^{2}-3\times 7^{2}
Whakareatia te 3 ki te 64, ka 192.
192+6\times 25-3\times 7^{2}
Tātaihia te 5 mā te pū o 2, kia riro ko 25.
192+150-3\times 7^{2}
Whakareatia te 6 ki te 25, ka 150.
342-3\times 7^{2}
Tāpirihia te 192 ki te 150, ka 342.
342-3\times 49
Tātaihia te 7 mā te pū o 2, kia riro ko 49.
342-147
Whakareatia te 3 ki te 49, ka 147.
195
Tangohia te 147 i te 342, ka 195.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}