Whakaoti mō x
x=4
Graph
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
3 \cdot ( x - 1 ) - ( - x + 1 ) = 2 \cdot ( x + 2 )
Tohaina
Kua tāruatia ki te papatopenga
3x-3-\left(-x+1\right)=2\left(x+2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x-1.
3x-3-\left(-x\right)-1=2\left(x+2\right)
Hei kimi i te tauaro o -x+1, kimihia te tauaro o ia taurangi.
3x-4-\left(-x\right)=2\left(x+2\right)
Tangohia te 1 i te -3, ka -4.
3x-4-\left(-x\right)=2x+4
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x+2.
3x-4-\left(-x\right)-2x=4
Tangohia te 2x mai i ngā taha e rua.
x-4-\left(-x\right)=4
Pahekotia te 3x me -2x, ka x.
x-\left(-x\right)=4+4
Me tāpiri te 4 ki ngā taha e rua.
x-\left(-x\right)=8
Tāpirihia te 4 ki te 4, ka 8.
x+x=8
Whakareatia te -1 ki te -1, ka 1.
2x=8
Pahekotia te x me x, ka 2x.
x=\frac{8}{2}
Whakawehea ngā taha e rua ki te 2.
x=4
Whakawehea te 8 ki te 2, kia riro ko 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}