Aromātai
\frac{34}{5}=6.8
Tauwehe
\frac{2 \cdot 17}{5} = 6\frac{4}{5} = 6.8
Tohaina
Kua tāruatia ki te papatopenga
3\left(\frac{20+3}{5}-2\right)-1
Whakareatia te 4 ki te 5, ka 20.
3\left(\frac{23}{5}-2\right)-1
Tāpirihia te 20 ki te 3, ka 23.
3\left(\frac{23}{5}-\frac{10}{5}\right)-1
Me tahuri te 2 ki te hautau \frac{10}{5}.
3\times \frac{23-10}{5}-1
Tā te mea he rite te tauraro o \frac{23}{5} me \frac{10}{5}, me tango rāua mā te tango i ō raua taurunga.
3\times \frac{13}{5}-1
Tangohia te 10 i te 23, ka 13.
\frac{3\times 13}{5}-1
Tuhia te 3\times \frac{13}{5} hei hautanga kotahi.
\frac{39}{5}-1
Whakareatia te 3 ki te 13, ka 39.
\frac{39}{5}-\frac{5}{5}
Me tahuri te 1 ki te hautau \frac{5}{5}.
\frac{39-5}{5}
Tā te mea he rite te tauraro o \frac{39}{5} me \frac{5}{5}, me tango rāua mā te tango i ō raua taurunga.
\frac{34}{5}
Tangohia te 5 i te 39, ka 34.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}