Aromātai
\sqrt{3}+20\approx 21.732050808
Tohaina
Kua tāruatia ki te papatopenga
3\times 3\sqrt{3}-2\left(1+\sqrt{9}+2\sqrt{27}+\sqrt{36}-2\sqrt{3}-\sqrt{4}-18\right)
Tauwehea te 27=3^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 3} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{3}. Tuhia te pūtakerua o te 3^{2}.
9\sqrt{3}-2\left(1+\sqrt{9}+2\sqrt{27}+\sqrt{36}-2\sqrt{3}-\sqrt{4}-18\right)
Whakareatia te 3 ki te 3, ka 9.
9\sqrt{3}-2\left(1+3+2\sqrt{27}+\sqrt{36}-2\sqrt{3}-\sqrt{4}-18\right)
Tātaitia te pūtakerua o 9 kia tae ki 3.
9\sqrt{3}-2\left(4+2\sqrt{27}+\sqrt{36}-2\sqrt{3}-\sqrt{4}-18\right)
Tāpirihia te 1 ki te 3, ka 4.
9\sqrt{3}-2\left(4+2\times 3\sqrt{3}+\sqrt{36}-2\sqrt{3}-\sqrt{4}-18\right)
Tauwehea te 27=3^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 3} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{3}. Tuhia te pūtakerua o te 3^{2}.
9\sqrt{3}-2\left(4+6\sqrt{3}+\sqrt{36}-2\sqrt{3}-\sqrt{4}-18\right)
Whakareatia te 2 ki te 3, ka 6.
9\sqrt{3}-2\left(4+6\sqrt{3}+6-2\sqrt{3}-\sqrt{4}-18\right)
Tātaitia te pūtakerua o 36 kia tae ki 6.
9\sqrt{3}-2\left(10+6\sqrt{3}-2\sqrt{3}-\sqrt{4}-18\right)
Tāpirihia te 4 ki te 6, ka 10.
9\sqrt{3}-2\left(10+4\sqrt{3}-\sqrt{4}-18\right)
Pahekotia te 6\sqrt{3} me -2\sqrt{3}, ka 4\sqrt{3}.
9\sqrt{3}-2\left(10+4\sqrt{3}-2-18\right)
Tātaitia te pūtakerua o 4 kia tae ki 2.
9\sqrt{3}-2\left(8+4\sqrt{3}-18\right)
Tangohia te 2 i te 10, ka 8.
9\sqrt{3}-2\left(-10+4\sqrt{3}\right)
Tangohia te 18 i te 8, ka -10.
9\sqrt{3}+20-8\sqrt{3}
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te -10+4\sqrt{3}.
\sqrt{3}+20
Pahekotia te 9\sqrt{3} me -8\sqrt{3}, ka \sqrt{3}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}