Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3^{x+1}=\frac{5554571841}{10000}
Whakamahia ngā ture taupū me ngā taupū kōaro hei whakaoti i te whārite.
\log(3^{x+1})=\log(\frac{5554571841}{10000})
Tuhia te tau taupū kōaro o ngā taha e rua o te whārite.
\left(x+1\right)\log(3)=\log(\frac{5554571841}{10000})
Ko te taupū kōaro o tētahi tau ka hīkina ki tētahi pū ko te pū whakarea ki te taupū kōaro o taua tau.
x+1=\frac{\log(\frac{5554571841}{10000})}{\log(3)}
Whakawehea ngā taha e rua ki te \log(3).
x+1=\log_{3}\left(\frac{5554571841}{10000}\right)
Mā te tikanga tātai huri pūtake \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
x=\frac{\ln(\frac{5554571841}{10000})}{\ln(3)}-1
Me tango 1 mai i ngā taha e rua o te whārite.