Aromātai
4
Tauwehe
2^{2}
Tohaina
Kua tāruatia ki te papatopenga
27+3\times 5^{2}+2\times 3^{2}-4\left(7^{2}\times 3-11^{2}+3\right)
Tātaihia te 3 mā te pū o 3, kia riro ko 27.
27+3\times 25+2\times 3^{2}-4\left(7^{2}\times 3-11^{2}+3\right)
Tātaihia te 5 mā te pū o 2, kia riro ko 25.
27+75+2\times 3^{2}-4\left(7^{2}\times 3-11^{2}+3\right)
Whakareatia te 3 ki te 25, ka 75.
102+2\times 3^{2}-4\left(7^{2}\times 3-11^{2}+3\right)
Tāpirihia te 27 ki te 75, ka 102.
102+2\times 9-4\left(7^{2}\times 3-11^{2}+3\right)
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
102+18-4\left(7^{2}\times 3-11^{2}+3\right)
Whakareatia te 2 ki te 9, ka 18.
120-4\left(7^{2}\times 3-11^{2}+3\right)
Tāpirihia te 102 ki te 18, ka 120.
120-4\left(49\times 3-11^{2}+3\right)
Tātaihia te 7 mā te pū o 2, kia riro ko 49.
120-4\left(147-11^{2}+3\right)
Whakareatia te 49 ki te 3, ka 147.
120-4\left(147-121+3\right)
Tātaihia te 11 mā te pū o 2, kia riro ko 121.
120-4\left(26+3\right)
Tangohia te 121 i te 147, ka 26.
120-4\times 29
Tāpirihia te 26 ki te 3, ka 29.
120-116
Whakareatia te 4 ki te 29, ka 116.
4
Tangohia te 116 i te 120, ka 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}