Tīpoka ki ngā ihirangi matua
Whakaoti mō t
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

9+\left(4-2t\right)^{2}=\left(2t\right)^{2}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
9+16-16t+4t^{2}=\left(2t\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(4-2t\right)^{2}.
25-16t+4t^{2}=\left(2t\right)^{2}
Tāpirihia te 9 ki te 16, ka 25.
25-16t+4t^{2}=2^{2}t^{2}
Whakarohaina te \left(2t\right)^{2}.
25-16t+4t^{2}=4t^{2}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
25-16t+4t^{2}-4t^{2}=0
Tangohia te 4t^{2} mai i ngā taha e rua.
25-16t=0
Pahekotia te 4t^{2} me -4t^{2}, ka 0.
-16t=-25
Tangohia te 25 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
t=\frac{-25}{-16}
Whakawehea ngā taha e rua ki te -16.
t=\frac{25}{16}
Ka taea te hautanga \frac{-25}{-16} te whakamāmā ki te \frac{25}{16} mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.