Whakaoti mō t
t = \frac{25}{16} = 1\frac{9}{16} = 1.5625
Tohaina
Kua tāruatia ki te papatopenga
9+\left(4-2t\right)^{2}=\left(2t\right)^{2}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
9+16-16t+4t^{2}=\left(2t\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(4-2t\right)^{2}.
25-16t+4t^{2}=\left(2t\right)^{2}
Tāpirihia te 9 ki te 16, ka 25.
25-16t+4t^{2}=2^{2}t^{2}
Whakarohaina te \left(2t\right)^{2}.
25-16t+4t^{2}=4t^{2}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
25-16t+4t^{2}-4t^{2}=0
Tangohia te 4t^{2} mai i ngā taha e rua.
25-16t=0
Pahekotia te 4t^{2} me -4t^{2}, ka 0.
-16t=-25
Tangohia te 25 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
t=\frac{-25}{-16}
Whakawehea ngā taha e rua ki te -16.
t=\frac{25}{16}
Ka taea te hautanga \frac{-25}{-16} te whakamāmā ki te \frac{25}{16} mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}