Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4782969x+2y=6,3x+6y=18
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
4782969x+2y=6
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
4782969x=-2y+6
Me tango 2y mai i ngā taha e rua o te whārite.
x=\frac{1}{4782969}\left(-2y+6\right)
Whakawehea ngā taha e rua ki te 4782969.
x=-\frac{2}{4782969}y+\frac{2}{1594323}
Whakareatia \frac{1}{4782969} ki te -2y+6.
3\left(-\frac{2}{4782969}y+\frac{2}{1594323}\right)+6y=18
Whakakapia te -\frac{2y}{4782969}+\frac{2}{1594323} mō te x ki tērā atu whārite, 3x+6y=18.
-\frac{2}{1594323}y+\frac{2}{531441}+6y=18
Whakareatia 3 ki te -\frac{2y}{4782969}+\frac{2}{1594323}.
\frac{9565936}{1594323}y+\frac{2}{531441}=18
Tāpiri -\frac{2y}{1594323} ki te 6y.
\frac{9565936}{1594323}y=\frac{9565936}{531441}
Me tango \frac{2}{531441} mai i ngā taha e rua o te whārite.
y=3
Whakawehea ngā taha e rua o te whārite ki te \frac{9565936}{1594323}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{2}{4782969}\times 3+\frac{2}{1594323}
Whakaurua te 3 mō y ki x=-\frac{2}{4782969}y+\frac{2}{1594323}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-2+2}{1594323}
Whakareatia -\frac{2}{4782969} ki te 3.
x=0
Tāpiri \frac{2}{1594323} ki te -\frac{2}{1594323} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=0,y=3
Kua oti te pūnaha te whakatau.
4782969x+2y=6,3x+6y=18
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}4782969&2\\3&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\18\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}4782969&2\\3&6\end{matrix}\right))\left(\begin{matrix}4782969&2\\3&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4782969&2\\3&6\end{matrix}\right))\left(\begin{matrix}6\\18\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}4782969&2\\3&6\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4782969&2\\3&6\end{matrix}\right))\left(\begin{matrix}6\\18\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4782969&2\\3&6\end{matrix}\right))\left(\begin{matrix}6\\18\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{4782969\times 6-2\times 3}&-\frac{2}{4782969\times 6-2\times 3}\\-\frac{3}{4782969\times 6-2\times 3}&\frac{4782969}{4782969\times 6-2\times 3}\end{matrix}\right)\left(\begin{matrix}6\\18\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4782968}&-\frac{1}{14348904}\\-\frac{1}{9565936}&\frac{1594323}{9565936}\end{matrix}\right)\left(\begin{matrix}6\\18\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4782968}\times 6-\frac{1}{14348904}\times 18\\-\frac{1}{9565936}\times 6+\frac{1594323}{9565936}\times 18\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\3\end{matrix}\right)
Mahia ngā tātaitanga.
x=0,y=3
Tangohia ngā huānga poukapa x me y.
4782969x+2y=6,3x+6y=18
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\times 4782969x+3\times 2y=3\times 6,4782969\times 3x+4782969\times 6y=4782969\times 18
Kia ōrite ai a 4782969x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 4782969.
14348907x+6y=18,14348907x+28697814y=86093442
Whakarūnātia.
14348907x-14348907x+6y-28697814y=18-86093442
Me tango 14348907x+28697814y=86093442 mai i 14348907x+6y=18 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
6y-28697814y=18-86093442
Tāpiri 14348907x ki te -14348907x. Ka whakakore atu ngā kupu 14348907x me -14348907x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-28697808y=18-86093442
Tāpiri 6y ki te -28697814y.
-28697808y=-86093424
Tāpiri 18 ki te -86093442.
y=3
Whakawehea ngā taha e rua ki te -28697808.
3x+6\times 3=18
Whakaurua te 3 mō y ki 3x+6y=18. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x+18=18
Whakareatia 6 ki te 3.
3x=0
Me tango 18 mai i ngā taha e rua o te whārite.
x=0
Whakawehea ngā taha e rua ki te 3.
x=0,y=3
Kua oti te pūnaha te whakatau.