Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3^{-x-1}=\frac{1}{9}
Whakamahia ngā ture taupū me ngā taupū kōaro hei whakaoti i te whārite.
\log(3^{-x-1})=\log(\frac{1}{9})
Tuhia te tau taupū kōaro o ngā taha e rua o te whārite.
\left(-x-1\right)\log(3)=\log(\frac{1}{9})
Ko te taupū kōaro o tētahi tau ka hīkina ki tētahi pū ko te pū whakarea ki te taupū kōaro o taua tau.
-x-1=\frac{\log(\frac{1}{9})}{\log(3)}
Whakawehea ngā taha e rua ki te \log(3).
-x-1=\log_{3}\left(\frac{1}{9}\right)
Mā te tikanga tātai huri pūtake \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
-x=-2-\left(-1\right)
Me tāpiri 1 ki ngā taha e rua o te whārite.
x=-\frac{1}{-1}
Whakawehea ngā taha e rua ki te -1.