Tīpoka ki ngā ihirangi matua
Whakaoti mō v
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3v=vv-10
Tē taea kia ōrite te tāupe v ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te v.
3v=v^{2}-10
Whakareatia te v ki te v, ka v^{2}.
3v-v^{2}=-10
Tangohia te v^{2} mai i ngā taha e rua.
3v-v^{2}+10=0
Me tāpiri te 10 ki ngā taha e rua.
-v^{2}+3v+10=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
v=\frac{-3±\sqrt{3^{2}-4\left(-1\right)\times 10}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 3 mō b, me 10 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
v=\frac{-3±\sqrt{9-4\left(-1\right)\times 10}}{2\left(-1\right)}
Pūrua 3.
v=\frac{-3±\sqrt{9+4\times 10}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
v=\frac{-3±\sqrt{9+40}}{2\left(-1\right)}
Whakareatia 4 ki te 10.
v=\frac{-3±\sqrt{49}}{2\left(-1\right)}
Tāpiri 9 ki te 40.
v=\frac{-3±7}{2\left(-1\right)}
Tuhia te pūtakerua o te 49.
v=\frac{-3±7}{-2}
Whakareatia 2 ki te -1.
v=\frac{4}{-2}
Nā, me whakaoti te whārite v=\frac{-3±7}{-2} ina he tāpiri te ±. Tāpiri -3 ki te 7.
v=-2
Whakawehe 4 ki te -2.
v=-\frac{10}{-2}
Nā, me whakaoti te whārite v=\frac{-3±7}{-2} ina he tango te ±. Tango 7 mai i -3.
v=5
Whakawehe -10 ki te -2.
v=-2 v=5
Kua oti te whārite te whakatau.
3v=vv-10
Tē taea kia ōrite te tāupe v ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te v.
3v=v^{2}-10
Whakareatia te v ki te v, ka v^{2}.
3v-v^{2}=-10
Tangohia te v^{2} mai i ngā taha e rua.
-v^{2}+3v=-10
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-v^{2}+3v}{-1}=-\frac{10}{-1}
Whakawehea ngā taha e rua ki te -1.
v^{2}+\frac{3}{-1}v=-\frac{10}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
v^{2}-3v=-\frac{10}{-1}
Whakawehe 3 ki te -1.
v^{2}-3v=10
Whakawehe -10 ki te -1.
v^{2}-3v+\left(-\frac{3}{2}\right)^{2}=10+\left(-\frac{3}{2}\right)^{2}
Whakawehea te -3, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{3}{2}. Nā, tāpiria te pūrua o te -\frac{3}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
v^{2}-3v+\frac{9}{4}=10+\frac{9}{4}
Pūruatia -\frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
v^{2}-3v+\frac{9}{4}=\frac{49}{4}
Tāpiri 10 ki te \frac{9}{4}.
\left(v-\frac{3}{2}\right)^{2}=\frac{49}{4}
Tauwehea v^{2}-3v+\frac{9}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(v-\frac{3}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
v-\frac{3}{2}=\frac{7}{2} v-\frac{3}{2}=-\frac{7}{2}
Whakarūnātia.
v=5 v=-2
Me tāpiri \frac{3}{2} ki ngā taha e rua o te whārite.