Whakaoti mō x (complex solution)
x=-\frac{\sqrt{3}i}{6}-\frac{1}{2}\approx -0.5-0.288675135i
x=1
x=\frac{\sqrt{3}i}{6}-\frac{1}{2}\approx -0.5+0.288675135i
Whakaoti mō x
x=1
Graph
Pātaitai
Polynomial
5 raruraru e ōrite ana ki:
3 = \frac { 1 } { x ^ { 2 } } : x + \frac { 4 } { 2 x } : x
Tohaina
Kua tāruatia ki te papatopenga
3x=\frac{1}{x^{2}}+\frac{4}{2x}
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
3x=\frac{2}{2x^{2}}+\frac{4x}{2x^{2}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o x^{2} me 2x ko 2x^{2}. Whakareatia \frac{1}{x^{2}} ki te \frac{2}{2}. Whakareatia \frac{4}{2x} ki te \frac{x}{x}.
3x=\frac{2+4x}{2x^{2}}
Tā te mea he rite te tauraro o \frac{2}{2x^{2}} me \frac{4x}{2x^{2}}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
3x=\frac{2\left(2x+1\right)}{2x^{2}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{2+4x}{2x^{2}}.
3x=\frac{2x+1}{x^{2}}
Me whakakore tahi te 2 i te taurunga me te tauraro.
3x-\frac{2x+1}{x^{2}}=0
Tangohia te \frac{2x+1}{x^{2}} mai i ngā taha e rua.
\frac{3xx^{2}}{x^{2}}-\frac{2x+1}{x^{2}}=0
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 3x ki te \frac{x^{2}}{x^{2}}.
\frac{3xx^{2}-\left(2x+1\right)}{x^{2}}=0
Tā te mea he rite te tauraro o \frac{3xx^{2}}{x^{2}} me \frac{2x+1}{x^{2}}, me tango rāua mā te tango i ō raua taurunga.
\frac{3x^{3}-2x-1}{x^{2}}=0
Mahia ngā whakarea i roto o 3xx^{2}-\left(2x+1\right).
3x^{3}-2x-1=0
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x^{2}.
±\frac{1}{3},±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau -1, ā, ka wehea e q te whakarea arahanga 3. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
x=1
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
3x^{2}+3x+1=0
Mā te whakatakotoranga Tauwehe, he tauwehe te x-k o te pūrau mō ia pūtake k. Whakawehea te 3x^{3}-2x-1 ki te x-1, kia riro ko 3x^{2}+3x+1. Whakaotihia te whārite ina ōrite te hua ki te 0.
x=\frac{-3±\sqrt{3^{2}-4\times 3\times 1}}{2\times 3}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 3 mō te a, te 3 mō te b, me te 1 mō te c i te ture pūrua.
x=\frac{-3±\sqrt{-3}}{6}
Mahia ngā tātaitai.
x=-\frac{\sqrt{3}i}{6}-\frac{1}{2} x=\frac{\sqrt{3}i}{6}-\frac{1}{2}
Whakaotia te whārite 3x^{2}+3x+1=0 ina he tōrunga te ±, ina he tōraro te ±.
x=1 x=-\frac{\sqrt{3}i}{6}-\frac{1}{2} x=\frac{\sqrt{3}i}{6}-\frac{1}{2}
Rārangitia ngā otinga katoa i kitea.
3x=\frac{1}{x^{2}}+\frac{4}{2x}
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
3x=\frac{2}{2x^{2}}+\frac{4x}{2x^{2}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o x^{2} me 2x ko 2x^{2}. Whakareatia \frac{1}{x^{2}} ki te \frac{2}{2}. Whakareatia \frac{4}{2x} ki te \frac{x}{x}.
3x=\frac{2+4x}{2x^{2}}
Tā te mea he rite te tauraro o \frac{2}{2x^{2}} me \frac{4x}{2x^{2}}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
3x=\frac{2\left(2x+1\right)}{2x^{2}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{2+4x}{2x^{2}}.
3x=\frac{2x+1}{x^{2}}
Me whakakore tahi te 2 i te taurunga me te tauraro.
3x-\frac{2x+1}{x^{2}}=0
Tangohia te \frac{2x+1}{x^{2}} mai i ngā taha e rua.
\frac{3xx^{2}}{x^{2}}-\frac{2x+1}{x^{2}}=0
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 3x ki te \frac{x^{2}}{x^{2}}.
\frac{3xx^{2}-\left(2x+1\right)}{x^{2}}=0
Tā te mea he rite te tauraro o \frac{3xx^{2}}{x^{2}} me \frac{2x+1}{x^{2}}, me tango rāua mā te tango i ō raua taurunga.
\frac{3x^{3}-2x-1}{x^{2}}=0
Mahia ngā whakarea i roto o 3xx^{2}-\left(2x+1\right).
3x^{3}-2x-1=0
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x^{2}.
±\frac{1}{3},±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau -1, ā, ka wehea e q te whakarea arahanga 3. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
x=1
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
3x^{2}+3x+1=0
Mā te whakatakotoranga Tauwehe, he tauwehe te x-k o te pūrau mō ia pūtake k. Whakawehea te 3x^{3}-2x-1 ki te x-1, kia riro ko 3x^{2}+3x+1. Whakaotihia te whārite ina ōrite te hua ki te 0.
x=\frac{-3±\sqrt{3^{2}-4\times 3\times 1}}{2\times 3}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 3 mō te a, te 3 mō te b, me te 1 mō te c i te ture pūrua.
x=\frac{-3±\sqrt{-3}}{6}
Mahia ngā tātaitai.
x\in \emptyset
Tā te mea e kore te pūrua o tētahi tau tōraro e tautohutia ki te āpure tūturu, kāhore he rongoā.
x=1
Rārangitia ngā otinga katoa i kitea.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}