Aromātai
-7321
Tauwehe
-7321
Tohaina
Kua tāruatia ki te papatopenga
3+54-\frac{612}{3}\left(35+\frac{7}{6}\right)
Whakareatia te 6 ki te 9, ka 54.
57-\frac{612}{3}\left(35+\frac{7}{6}\right)
Tāpirihia te 3 ki te 54, ka 57.
57-204\left(35+\frac{7}{6}\right)
Whakawehea te 612 ki te 3, kia riro ko 204.
57-204\left(\frac{210}{6}+\frac{7}{6}\right)
Me tahuri te 35 ki te hautau \frac{210}{6}.
57-204\times \frac{210+7}{6}
Tā te mea he rite te tauraro o \frac{210}{6} me \frac{7}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
57-204\times \frac{217}{6}
Tāpirihia te 210 ki te 7, ka 217.
57-\frac{204\times 217}{6}
Tuhia te 204\times \frac{217}{6} hei hautanga kotahi.
57-\frac{44268}{6}
Whakareatia te 204 ki te 217, ka 44268.
57-7378
Whakawehea te 44268 ki te 6, kia riro ko 7378.
-7321
Tangohia te 7378 i te 57, ka -7321.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}