Aromātai
7h-6
Kimi Pārōnaki e ai ki h
7
Tohaina
Kua tāruatia ki te papatopenga
3+7h-9
Pahekotia te 3h me 4h, ka 7h.
-6+7h
Tangohia te 9 i te 3, ka -6.
\frac{\mathrm{d}}{\mathrm{d}h}(3+7h-9)
Pahekotia te 3h me 4h, ka 7h.
\frac{\mathrm{d}}{\mathrm{d}h}(-6+7h)
Tangohia te 9 i te 3, ka -6.
7h^{1-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
7h^{0}
Tango 1 mai i 1.
7\times 1
Mō tētahi kupu t mahue te 0, t^{0}=1.
7
Mō tētahi kupu t, t\times 1=t me 1t=t.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}