Whakaoti mō x
x=3
x=0
Graph
Tohaina
Kua tāruatia ki te papatopenga
3+2x-x^{2}-x^{2}=-4x+3
Tangohia te x^{2} mai i ngā taha e rua.
3+2x-2x^{2}=-4x+3
Pahekotia te -x^{2} me -x^{2}, ka -2x^{2}.
3+2x-2x^{2}+4x=3
Me tāpiri te 4x ki ngā taha e rua.
3+6x-2x^{2}=3
Pahekotia te 2x me 4x, ka 6x.
3+6x-2x^{2}-3=0
Tangohia te 3 mai i ngā taha e rua.
6x-2x^{2}=0
Tangohia te 3 i te 3, ka 0.
x\left(6-2x\right)=0
Tauwehea te x.
x=0 x=3
Hei kimi otinga whārite, me whakaoti te x=0 me te 6-2x=0.
3+2x-x^{2}-x^{2}=-4x+3
Tangohia te x^{2} mai i ngā taha e rua.
3+2x-2x^{2}=-4x+3
Pahekotia te -x^{2} me -x^{2}, ka -2x^{2}.
3+2x-2x^{2}+4x=3
Me tāpiri te 4x ki ngā taha e rua.
3+6x-2x^{2}=3
Pahekotia te 2x me 4x, ka 6x.
3+6x-2x^{2}-3=0
Tangohia te 3 mai i ngā taha e rua.
6x-2x^{2}=0
Tangohia te 3 i te 3, ka 0.
-2x^{2}+6x=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-6±\sqrt{6^{2}}}{2\left(-2\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -2 mō a, 6 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±6}{2\left(-2\right)}
Tuhia te pūtakerua o te 6^{2}.
x=\frac{-6±6}{-4}
Whakareatia 2 ki te -2.
x=\frac{0}{-4}
Nā, me whakaoti te whārite x=\frac{-6±6}{-4} ina he tāpiri te ±. Tāpiri -6 ki te 6.
x=0
Whakawehe 0 ki te -4.
x=-\frac{12}{-4}
Nā, me whakaoti te whārite x=\frac{-6±6}{-4} ina he tango te ±. Tango 6 mai i -6.
x=3
Whakawehe -12 ki te -4.
x=0 x=3
Kua oti te whārite te whakatau.
3+2x-x^{2}-x^{2}=-4x+3
Tangohia te x^{2} mai i ngā taha e rua.
3+2x-2x^{2}=-4x+3
Pahekotia te -x^{2} me -x^{2}, ka -2x^{2}.
3+2x-2x^{2}+4x=3
Me tāpiri te 4x ki ngā taha e rua.
3+6x-2x^{2}=3
Pahekotia te 2x me 4x, ka 6x.
6x-2x^{2}=3-3
Tangohia te 3 mai i ngā taha e rua.
6x-2x^{2}=0
Tangohia te 3 i te 3, ka 0.
-2x^{2}+6x=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-2x^{2}+6x}{-2}=\frac{0}{-2}
Whakawehea ngā taha e rua ki te -2.
x^{2}+\frac{6}{-2}x=\frac{0}{-2}
Mā te whakawehe ki te -2 ka wetekia te whakareanga ki te -2.
x^{2}-3x=\frac{0}{-2}
Whakawehe 6 ki te -2.
x^{2}-3x=0
Whakawehe 0 ki te -2.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=\left(-\frac{3}{2}\right)^{2}
Whakawehea te -3, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{3}{2}. Nā, tāpiria te pūrua o te -\frac{3}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-3x+\frac{9}{4}=\frac{9}{4}
Pūruatia -\frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(x-\frac{3}{2}\right)^{2}=\frac{9}{4}
Tauwehea x^{2}-3x+\frac{9}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{3}{2}=\frac{3}{2} x-\frac{3}{2}=-\frac{3}{2}
Whakarūnātia.
x=3 x=0
Me tāpiri \frac{3}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}