Tīpoka ki ngā ihirangi matua
Whakaoti mō r
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

15=\frac{1}{2}\times 98r^{2}
Tāpirihia te 3 ki te 12, ka 15.
15=49r^{2}
Whakareatia te \frac{1}{2} ki te 98, ka 49.
49r^{2}=15
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
r^{2}=\frac{15}{49}
Whakawehea ngā taha e rua ki te 49.
r=\frac{\sqrt{15}}{7} r=-\frac{\sqrt{15}}{7}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
15=\frac{1}{2}\times 98r^{2}
Tāpirihia te 3 ki te 12, ka 15.
15=49r^{2}
Whakareatia te \frac{1}{2} ki te 98, ka 49.
49r^{2}=15
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
49r^{2}-15=0
Tangohia te 15 mai i ngā taha e rua.
r=\frac{0±\sqrt{0^{2}-4\times 49\left(-15\right)}}{2\times 49}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 49 mō a, 0 mō b, me -15 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{0±\sqrt{-4\times 49\left(-15\right)}}{2\times 49}
Pūrua 0.
r=\frac{0±\sqrt{-196\left(-15\right)}}{2\times 49}
Whakareatia -4 ki te 49.
r=\frac{0±\sqrt{2940}}{2\times 49}
Whakareatia -196 ki te -15.
r=\frac{0±14\sqrt{15}}{2\times 49}
Tuhia te pūtakerua o te 2940.
r=\frac{0±14\sqrt{15}}{98}
Whakareatia 2 ki te 49.
r=\frac{\sqrt{15}}{7}
Nā, me whakaoti te whārite r=\frac{0±14\sqrt{15}}{98} ina he tāpiri te ±.
r=-\frac{\sqrt{15}}{7}
Nā, me whakaoti te whārite r=\frac{0±14\sqrt{15}}{98} ina he tango te ±.
r=\frac{\sqrt{15}}{7} r=-\frac{\sqrt{15}}{7}
Kua oti te whārite te whakatau.