Whakaoti mō r
r=\frac{\sqrt{15}}{7}\approx 0.553283335
r=-\frac{\sqrt{15}}{7}\approx -0.553283335
Tohaina
Kua tāruatia ki te papatopenga
15=\frac{1}{2}\times 98r^{2}
Tāpirihia te 3 ki te 12, ka 15.
15=49r^{2}
Whakareatia te \frac{1}{2} ki te 98, ka 49.
49r^{2}=15
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
r^{2}=\frac{15}{49}
Whakawehea ngā taha e rua ki te 49.
r=\frac{\sqrt{15}}{7} r=-\frac{\sqrt{15}}{7}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
15=\frac{1}{2}\times 98r^{2}
Tāpirihia te 3 ki te 12, ka 15.
15=49r^{2}
Whakareatia te \frac{1}{2} ki te 98, ka 49.
49r^{2}=15
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
49r^{2}-15=0
Tangohia te 15 mai i ngā taha e rua.
r=\frac{0±\sqrt{0^{2}-4\times 49\left(-15\right)}}{2\times 49}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 49 mō a, 0 mō b, me -15 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{0±\sqrt{-4\times 49\left(-15\right)}}{2\times 49}
Pūrua 0.
r=\frac{0±\sqrt{-196\left(-15\right)}}{2\times 49}
Whakareatia -4 ki te 49.
r=\frac{0±\sqrt{2940}}{2\times 49}
Whakareatia -196 ki te -15.
r=\frac{0±14\sqrt{15}}{2\times 49}
Tuhia te pūtakerua o te 2940.
r=\frac{0±14\sqrt{15}}{98}
Whakareatia 2 ki te 49.
r=\frac{\sqrt{15}}{7}
Nā, me whakaoti te whārite r=\frac{0±14\sqrt{15}}{98} ina he tāpiri te ±.
r=-\frac{\sqrt{15}}{7}
Nā, me whakaoti te whārite r=\frac{0±14\sqrt{15}}{98} ina he tango te ±.
r=\frac{\sqrt{15}}{7} r=-\frac{\sqrt{15}}{7}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}