Whakaoti mō x
x=\frac{3\left(\sqrt{3}+333\right)}{18481}\approx 0.054336678
Graph
Tohaina
Kua tāruatia ki te papatopenga
3+\frac{x\sqrt{3}}{\left(\sqrt{3}\right)^{2}}=111x-3
Whakangāwaritia te tauraro o \frac{x}{\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
3+\frac{x\sqrt{3}}{3}=111x-3
Ko te pūrua o \sqrt{3} ko 3.
3+\frac{x\sqrt{3}}{3}-111x=-3
Tangohia te 111x mai i ngā taha e rua.
\frac{x\sqrt{3}}{3}-111x=-3-3
Tangohia te 3 mai i ngā taha e rua.
\frac{x\sqrt{3}}{3}-111x=-6
Tangohia te 3 i te -3, ka -6.
x\sqrt{3}-333x=-18
Whakareatia ngā taha e rua o te whārite ki te 3.
\left(\sqrt{3}-333\right)x=-18
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\frac{\left(\sqrt{3}-333\right)x}{\sqrt{3}-333}=-\frac{18}{\sqrt{3}-333}
Whakawehea ngā taha e rua ki te \sqrt{3}-333.
x=-\frac{18}{\sqrt{3}-333}
Mā te whakawehe ki te \sqrt{3}-333 ka wetekia te whakareanga ki te \sqrt{3}-333.
x=\frac{3\sqrt{3}+999}{18481}
Whakawehe -18 ki te \sqrt{3}-333.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}