Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3+\frac{x\sqrt{3}}{\left(\sqrt{3}\right)^{2}}=111x-3
Whakangāwaritia te tauraro o \frac{x}{\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
3+\frac{x\sqrt{3}}{3}=111x-3
Ko te pūrua o \sqrt{3} ko 3.
3+\frac{x\sqrt{3}}{3}-111x=-3
Tangohia te 111x mai i ngā taha e rua.
\frac{x\sqrt{3}}{3}-111x=-3-3
Tangohia te 3 mai i ngā taha e rua.
\frac{x\sqrt{3}}{3}-111x=-6
Tangohia te 3 i te -3, ka -6.
x\sqrt{3}-333x=-18
Whakareatia ngā taha e rua o te whārite ki te 3.
\left(\sqrt{3}-333\right)x=-18
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\frac{\left(\sqrt{3}-333\right)x}{\sqrt{3}-333}=-\frac{18}{\sqrt{3}-333}
Whakawehea ngā taha e rua ki te \sqrt{3}-333.
x=-\frac{18}{\sqrt{3}-333}
Mā te whakawehe ki te \sqrt{3}-333 ka wetekia te whakareanga ki te \sqrt{3}-333.
x=\frac{3\sqrt{3}+999}{18481}
Whakawehe -18 ki te \sqrt{3}-333.