Whakaoti mō x
x = -\frac{35}{12} = -2\frac{11}{12} \approx -2.916666667
Graph
Tohaina
Kua tāruatia ki te papatopenga
63+12x=7\left(1\times 3+1\right)
Me whakarea ngā taha e rua o te whārite ki te 21, arā, te tauraro pātahi he tino iti rawa te kitea o 7,3.
63+12x=7\left(3+1\right)
Whakareatia te 1 ki te 3, ka 3.
63+12x=7\times 4
Tāpirihia te 3 ki te 1, ka 4.
63+12x=28
Whakareatia te 7 ki te 4, ka 28.
12x=28-63
Tangohia te 63 mai i ngā taha e rua.
12x=-35
Tangohia te 63 i te 28, ka -35.
x=\frac{-35}{12}
Whakawehea ngā taha e rua ki te 12.
x=-\frac{35}{12}
Ka taea te hautanga \frac{-35}{12} te tuhi anō ko -\frac{35}{12} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}