Whakaoti mō x
x=30
Graph
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
3 + \frac { 1 } { 5 } x + 6 + \frac { 1 } { 2 } x = x
Tohaina
Kua tāruatia ki te papatopenga
9+\frac{1}{5}x+\frac{1}{2}x=x
Tāpirihia te 3 ki te 6, ka 9.
9+\frac{7}{10}x=x
Pahekotia te \frac{1}{5}x me \frac{1}{2}x, ka \frac{7}{10}x.
9+\frac{7}{10}x-x=0
Tangohia te x mai i ngā taha e rua.
9-\frac{3}{10}x=0
Pahekotia te \frac{7}{10}x me -x, ka -\frac{3}{10}x.
-\frac{3}{10}x=-9
Tangohia te 9 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x=-9\left(-\frac{10}{3}\right)
Me whakarea ngā taha e rua ki te -\frac{10}{3}, te tau utu o -\frac{3}{10}.
x=\frac{-9\left(-10\right)}{3}
Tuhia te -9\left(-\frac{10}{3}\right) hei hautanga kotahi.
x=\frac{90}{3}
Whakareatia te -9 ki te -10, ka 90.
x=30
Whakawehea te 90 ki te 3, kia riro ko 30.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}