Whakaoti mō a
a=-\frac{b}{6}
Whakaoti mō b
b=-6a
Pātaitai
Complex Number
5 raruraru e ōrite ana ki:
3 i ^ { 14 } a = 4 ^ { - \frac { 1 } { 2 } } \cdot b
Tohaina
Kua tāruatia ki te papatopenga
3\left(-1\right)a=4^{-\frac{1}{2}}b
Tātaihia te i mā te pū o 14, kia riro ko -1.
-3a=4^{-\frac{1}{2}}b
Whakareatia te 3 ki te -1, ka -3.
-3a=\frac{1}{2}b
Tātaihia te 4 mā te pū o -\frac{1}{2}, kia riro ko \frac{1}{2}.
-3a=\frac{b}{2}
He hanga arowhānui tō te whārite.
\frac{-3a}{-3}=\frac{b}{-3\times 2}
Whakawehea ngā taha e rua ki te -3.
a=\frac{b}{-3\times 2}
Mā te whakawehe ki te -3 ka wetekia te whakareanga ki te -3.
a=-\frac{b}{6}
Whakawehe \frac{b}{2} ki te -3.
3\left(-1\right)a=4^{-\frac{1}{2}}b
Tātaihia te i mā te pū o 14, kia riro ko -1.
-3a=4^{-\frac{1}{2}}b
Whakareatia te 3 ki te -1, ka -3.
-3a=\frac{1}{2}b
Tātaihia te 4 mā te pū o -\frac{1}{2}, kia riro ko \frac{1}{2}.
\frac{1}{2}b=-3a
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\frac{\frac{1}{2}b}{\frac{1}{2}}=-\frac{3a}{\frac{1}{2}}
Me whakarea ngā taha e rua ki te 2.
b=-\frac{3a}{\frac{1}{2}}
Mā te whakawehe ki te \frac{1}{2} ka wetekia te whakareanga ki te \frac{1}{2}.
b=-6a
Whakawehe -3a ki te \frac{1}{2} mā te whakarea -3a ki te tau huripoki o \frac{1}{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}