Aromātai
\frac{25}{8}=3.125
Tauwehe
\frac{5 ^ {2}}{2 ^ {3}} = 3\frac{1}{8} = 3.125
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
3 \frac { 7 } { 12 } - \frac{ 5 }{ 8 } + \frac{ 1 }{ 6 }
Tohaina
Kua tāruatia ki te papatopenga
\frac{36+7}{12}-\frac{5}{8}+\frac{1}{6}
Whakareatia te 3 ki te 12, ka 36.
\frac{43}{12}-\frac{5}{8}+\frac{1}{6}
Tāpirihia te 36 ki te 7, ka 43.
\frac{86}{24}-\frac{15}{24}+\frac{1}{6}
Ko te maha noa iti rawa atu o 12 me 8 ko 24. Me tahuri \frac{43}{12} me \frac{5}{8} ki te hautau me te tautūnga 24.
\frac{86-15}{24}+\frac{1}{6}
Tā te mea he rite te tauraro o \frac{86}{24} me \frac{15}{24}, me tango rāua mā te tango i ō raua taurunga.
\frac{71}{24}+\frac{1}{6}
Tangohia te 15 i te 86, ka 71.
\frac{71}{24}+\frac{4}{24}
Ko te maha noa iti rawa atu o 24 me 6 ko 24. Me tahuri \frac{71}{24} me \frac{1}{6} ki te hautau me te tautūnga 24.
\frac{71+4}{24}
Tā te mea he rite te tauraro o \frac{71}{24} me \frac{4}{24}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{75}{24}
Tāpirihia te 71 ki te 4, ka 75.
\frac{25}{8}
Whakahekea te hautanga \frac{75}{24} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}