Whakaoti mō x
x = -\frac{3}{2} = -1\frac{1}{2} = -1.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x-20\left(x+1\right)=7
Whakareatia te 4 ki te 5, ka 20.
2x-20x-20=7
Whakamahia te āhuatanga tohatoha hei whakarea te -20 ki te x+1.
-18x-20=7
Pahekotia te 2x me -20x, ka -18x.
-18x=7+20
Me tāpiri te 20 ki ngā taha e rua.
-18x=27
Tāpirihia te 7 ki te 20, ka 27.
x=\frac{27}{-18}
Whakawehea ngā taha e rua ki te -18.
x=-\frac{3}{2}
Whakahekea te hautanga \frac{27}{-18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 9.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}