Whakaoti mō x
x=-11
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x-3=\frac{1}{3}\times 7x+\frac{1}{3}\times 2
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{3} ki te 7x+2.
2x-3=\frac{7}{3}x+\frac{1}{3}\times 2
Whakareatia te \frac{1}{3} ki te 7, ka \frac{7}{3}.
2x-3=\frac{7}{3}x+\frac{2}{3}
Whakareatia te \frac{1}{3} ki te 2, ka \frac{2}{3}.
2x-3-\frac{7}{3}x=\frac{2}{3}
Tangohia te \frac{7}{3}x mai i ngā taha e rua.
-\frac{1}{3}x-3=\frac{2}{3}
Pahekotia te 2x me -\frac{7}{3}x, ka -\frac{1}{3}x.
-\frac{1}{3}x=\frac{2}{3}+3
Me tāpiri te 3 ki ngā taha e rua.
-\frac{1}{3}x=\frac{2}{3}+\frac{9}{3}
Me tahuri te 3 ki te hautau \frac{9}{3}.
-\frac{1}{3}x=\frac{2+9}{3}
Tā te mea he rite te tauraro o \frac{2}{3} me \frac{9}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
-\frac{1}{3}x=\frac{11}{3}
Tāpirihia te 2 ki te 9, ka 11.
x=\frac{11}{3}\left(-3\right)
Me whakarea ngā taha e rua ki te -3, te tau utu o -\frac{1}{3}.
x=\frac{11\left(-3\right)}{3}
Tuhia te \frac{11}{3}\left(-3\right) hei hautanga kotahi.
x=\frac{-33}{3}
Whakareatia te 11 ki te -3, ka -33.
x=-11
Whakawehea te -33 ki te 3, kia riro ko -11.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}