Whakaoti mō x
x = \frac{\sqrt{145} - 1}{8} \approx 1.380199322
x=\frac{-\sqrt{145}-1}{8}\approx -1.630199322
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x\left(4x+3\right)-3\times 5=4x+3
Tē taea kia ōrite te tāupe x ki -\frac{3}{4} nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te 4x+3.
8x^{2}+6x-3\times 5=4x+3
Whakamahia te āhuatanga tohatoha hei whakarea te 2x ki te 4x+3.
8x^{2}+6x-15=4x+3
Whakareatia te 3 ki te 5, ka 15.
8x^{2}+6x-15-4x=3
Tangohia te 4x mai i ngā taha e rua.
8x^{2}+2x-15=3
Pahekotia te 6x me -4x, ka 2x.
8x^{2}+2x-15-3=0
Tangohia te 3 mai i ngā taha e rua.
8x^{2}+2x-18=0
Tangohia te 3 i te -15, ka -18.
x=\frac{-2±\sqrt{2^{2}-4\times 8\left(-18\right)}}{2\times 8}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 8 mō a, 2 mō b, me -18 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\times 8\left(-18\right)}}{2\times 8}
Pūrua 2.
x=\frac{-2±\sqrt{4-32\left(-18\right)}}{2\times 8}
Whakareatia -4 ki te 8.
x=\frac{-2±\sqrt{4+576}}{2\times 8}
Whakareatia -32 ki te -18.
x=\frac{-2±\sqrt{580}}{2\times 8}
Tāpiri 4 ki te 576.
x=\frac{-2±2\sqrt{145}}{2\times 8}
Tuhia te pūtakerua o te 580.
x=\frac{-2±2\sqrt{145}}{16}
Whakareatia 2 ki te 8.
x=\frac{2\sqrt{145}-2}{16}
Nā, me whakaoti te whārite x=\frac{-2±2\sqrt{145}}{16} ina he tāpiri te ±. Tāpiri -2 ki te 2\sqrt{145}.
x=\frac{\sqrt{145}-1}{8}
Whakawehe -2+2\sqrt{145} ki te 16.
x=\frac{-2\sqrt{145}-2}{16}
Nā, me whakaoti te whārite x=\frac{-2±2\sqrt{145}}{16} ina he tango te ±. Tango 2\sqrt{145} mai i -2.
x=\frac{-\sqrt{145}-1}{8}
Whakawehe -2-2\sqrt{145} ki te 16.
x=\frac{\sqrt{145}-1}{8} x=\frac{-\sqrt{145}-1}{8}
Kua oti te whārite te whakatau.
2x\left(4x+3\right)-3\times 5=4x+3
Tē taea kia ōrite te tāupe x ki -\frac{3}{4} nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te 4x+3.
8x^{2}+6x-3\times 5=4x+3
Whakamahia te āhuatanga tohatoha hei whakarea te 2x ki te 4x+3.
8x^{2}+6x-15=4x+3
Whakareatia te 3 ki te 5, ka 15.
8x^{2}+6x-15-4x=3
Tangohia te 4x mai i ngā taha e rua.
8x^{2}+2x-15=3
Pahekotia te 6x me -4x, ka 2x.
8x^{2}+2x=3+15
Me tāpiri te 15 ki ngā taha e rua.
8x^{2}+2x=18
Tāpirihia te 3 ki te 15, ka 18.
\frac{8x^{2}+2x}{8}=\frac{18}{8}
Whakawehea ngā taha e rua ki te 8.
x^{2}+\frac{2}{8}x=\frac{18}{8}
Mā te whakawehe ki te 8 ka wetekia te whakareanga ki te 8.
x^{2}+\frac{1}{4}x=\frac{18}{8}
Whakahekea te hautanga \frac{2}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}+\frac{1}{4}x=\frac{9}{4}
Whakahekea te hautanga \frac{18}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}+\frac{1}{4}x+\left(\frac{1}{8}\right)^{2}=\frac{9}{4}+\left(\frac{1}{8}\right)^{2}
Whakawehea te \frac{1}{4}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{8}. Nā, tāpiria te pūrua o te \frac{1}{8} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{1}{4}x+\frac{1}{64}=\frac{9}{4}+\frac{1}{64}
Pūruatia \frac{1}{8} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{1}{4}x+\frac{1}{64}=\frac{145}{64}
Tāpiri \frac{9}{4} ki te \frac{1}{64} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{1}{8}\right)^{2}=\frac{145}{64}
Tauwehea x^{2}+\frac{1}{4}x+\frac{1}{64}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{8}\right)^{2}}=\sqrt{\frac{145}{64}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{1}{8}=\frac{\sqrt{145}}{8} x+\frac{1}{8}=-\frac{\sqrt{145}}{8}
Whakarūnātia.
x=\frac{\sqrt{145}-1}{8} x=\frac{-\sqrt{145}-1}{8}
Me tango \frac{1}{8} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}