Whakaoti mō x
x=4
Graph
Pātaitai
Algebra
2x-2 \sqrt{ x } =4
Tohaina
Kua tāruatia ki te papatopenga
-2\sqrt{x}=4-2x
Me tango 2x mai i ngā taha e rua o te whārite.
\left(-2\sqrt{x}\right)^{2}=\left(4-2x\right)^{2}
Pūruatia ngā taha e rua o te whārite.
\left(-2\right)^{2}\left(\sqrt{x}\right)^{2}=\left(4-2x\right)^{2}
Whakarohaina te \left(-2\sqrt{x}\right)^{2}.
4\left(\sqrt{x}\right)^{2}=\left(4-2x\right)^{2}
Tātaihia te -2 mā te pū o 2, kia riro ko 4.
4x=\left(4-2x\right)^{2}
Tātaihia te \sqrt{x} mā te pū o 2, kia riro ko x.
4x=16-16x+4x^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(4-2x\right)^{2}.
4x-16=-16x+4x^{2}
Tangohia te 16 mai i ngā taha e rua.
4x-16+16x=4x^{2}
Me tāpiri te 16x ki ngā taha e rua.
20x-16=4x^{2}
Pahekotia te 4x me 16x, ka 20x.
20x-16-4x^{2}=0
Tangohia te 4x^{2} mai i ngā taha e rua.
5x-4-x^{2}=0
Whakawehea ngā taha e rua ki te 4.
-x^{2}+5x-4=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=5 ab=-\left(-4\right)=4
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -x^{2}+ax+bx-4. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,4 2,2
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 4.
1+4=5 2+2=4
Tātaihia te tapeke mō ia takirua.
a=4 b=1
Ko te otinga te takirua ka hoatu i te tapeke 5.
\left(-x^{2}+4x\right)+\left(x-4\right)
Tuhia anō te -x^{2}+5x-4 hei \left(-x^{2}+4x\right)+\left(x-4\right).
-x\left(x-4\right)+x-4
Whakatauwehea atu -x i te -x^{2}+4x.
\left(x-4\right)\left(-x+1\right)
Whakatauwehea atu te kīanga pātahi x-4 mā te whakamahi i te āhuatanga tātai tohatoha.
x=4 x=1
Hei kimi otinga whārite, me whakaoti te x-4=0 me te -x+1=0.
2\times 4-2\sqrt{4}=4
Whakakapia te 4 mō te x i te whārite 2x-2\sqrt{x}=4.
4=4
Whakarūnātia. Ko te uara x=4 kua ngata te whārite.
2\times 1-2\sqrt{1}=4
Whakakapia te 1 mō te x i te whārite 2x-2\sqrt{x}=4.
0=4
Whakarūnātia. Ko te uara x=1 kāore e ngata ana ki te whārite.
x=4
Ko te whārite -2\sqrt{x}=4-2x he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}