Whakaoti mō x
x=-\frac{1}{4}=-0.25
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x-1+\sqrt{2-x}=0
Me tāpiri te \sqrt{2-x} ki ngā taha e rua.
2x+\sqrt{2-x}=1
Me tāpiri te 1 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
\sqrt{2-x}=1-2x
Me tango 2x mai i ngā taha e rua o te whārite.
\left(\sqrt{2-x}\right)^{2}=\left(1-2x\right)^{2}
Pūruatia ngā taha e rua o te whārite.
2-x=\left(1-2x\right)^{2}
Tātaihia te \sqrt{2-x} mā te pū o 2, kia riro ko 2-x.
2-x=1-4x+4x^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(1-2x\right)^{2}.
2-x+4x=1+4x^{2}
Me tāpiri te 4x ki ngā taha e rua.
2+3x=1+4x^{2}
Pahekotia te -x me 4x, ka 3x.
2+3x-4x^{2}=1
Tangohia te 4x^{2} mai i ngā taha e rua.
2+3x-4x^{2}-1=0
Tangohia te 1 mai i ngā taha e rua.
1+3x-4x^{2}=0
Tangohia te 1 i te 2, ka 1.
-4x^{2}+3x+1=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=3 ab=-4=-4
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -4x^{2}+ax+bx+1. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,4 -2,2
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -4.
-1+4=3 -2+2=0
Tātaihia te tapeke mō ia takirua.
a=4 b=-1
Ko te otinga te takirua ka hoatu i te tapeke 3.
\left(-4x^{2}+4x\right)+\left(-x+1\right)
Tuhia anō te -4x^{2}+3x+1 hei \left(-4x^{2}+4x\right)+\left(-x+1\right).
4x\left(-x+1\right)-x+1
Whakatauwehea atu 4x i te -4x^{2}+4x.
\left(-x+1\right)\left(4x+1\right)
Whakatauwehea atu te kīanga pātahi -x+1 mā te whakamahi i te āhuatanga tātai tohatoha.
x=1 x=-\frac{1}{4}
Hei kimi otinga whārite, me whakaoti te -x+1=0 me te 4x+1=0.
2\times 1-1=-\sqrt{2-1}
Whakakapia te 1 mō te x i te whārite 2x-1=-\sqrt{2-x}.
1=-1
Whakarūnātia. Ko te uara x=1 kāore e ngata ana ki te whārite nā te mea e rerekē ngā tohu o te taha maui me te taha katau.
2\left(-\frac{1}{4}\right)-1=-\sqrt{2-\left(-\frac{1}{4}\right)}
Whakakapia te -\frac{1}{4} mō te x i te whārite 2x-1=-\sqrt{2-x}.
-\frac{3}{2}=-\frac{3}{2}
Whakarūnātia. Ko te uara x=-\frac{1}{4} kua ngata te whārite.
x=-\frac{1}{4}
Ko te whārite \sqrt{2-x}=1-2x he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}