Whakaoti mō x
x=-1
Graph
Pātaitai
Algebra
2x- \sqrt{ -x } +3 = 0
Tohaina
Kua tāruatia ki te papatopenga
-\sqrt{-x}=-\left(2x+3\right)
Me tango 2x+3 mai i ngā taha e rua o te whārite.
\sqrt{-x}=2x+3
Me whakakore te -1 ki ngā taha e rua.
\left(\sqrt{-x}\right)^{2}=\left(2x+3\right)^{2}
Pūruatia ngā taha e rua o te whārite.
-x=\left(2x+3\right)^{2}
Tātaihia te \sqrt{-x} mā te pū o 2, kia riro ko -x.
-x=4x^{2}+12x+9
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2x+3\right)^{2}.
-x-4x^{2}=12x+9
Tangohia te 4x^{2} mai i ngā taha e rua.
-x-4x^{2}-12x=9
Tangohia te 12x mai i ngā taha e rua.
-x-4x^{2}-12x-9=0
Tangohia te 9 mai i ngā taha e rua.
-13x-4x^{2}-9=0
Pahekotia te -x me -12x, ka -13x.
-4x^{2}-13x-9=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-13 ab=-4\left(-9\right)=36
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -4x^{2}+ax+bx-9. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-36 -2,-18 -3,-12 -4,-9 -6,-6
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 36.
-1-36=-37 -2-18=-20 -3-12=-15 -4-9=-13 -6-6=-12
Tātaihia te tapeke mō ia takirua.
a=-4 b=-9
Ko te otinga te takirua ka hoatu i te tapeke -13.
\left(-4x^{2}-4x\right)+\left(-9x-9\right)
Tuhia anō te -4x^{2}-13x-9 hei \left(-4x^{2}-4x\right)+\left(-9x-9\right).
4x\left(-x-1\right)+9\left(-x-1\right)
Tauwehea te 4x i te tuatahi me te 9 i te rōpū tuarua.
\left(-x-1\right)\left(4x+9\right)
Whakatauwehea atu te kīanga pātahi -x-1 mā te whakamahi i te āhuatanga tātai tohatoha.
x=-1 x=-\frac{9}{4}
Hei kimi otinga whārite, me whakaoti te -x-1=0 me te 4x+9=0.
2\left(-1\right)-\sqrt{-\left(-1\right)}+3=0
Whakakapia te -1 mō te x i te whārite 2x-\sqrt{-x}+3=0.
0=0
Whakarūnātia. Ko te uara x=-1 kua ngata te whārite.
2\left(-\frac{9}{4}\right)-\sqrt{-\left(-\frac{9}{4}\right)}+3=0
Whakakapia te -\frac{9}{4} mō te x i te whārite 2x-\sqrt{-x}+3=0.
-3=0
Whakarūnātia. Ko te uara x=-\frac{9}{4} kāore e ngata ana ki te whārite.
x=-1
Ko te whārite \sqrt{-x}=2x+3 he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}