Whakaoti mō x
x=\frac{1}{17}\approx 0.058823529
Graph
Tohaina
Kua tāruatia ki te papatopenga
8x-2x+x+1=24x
Me whakarea ngā taha e rua o te whārite ki te 4, arā, te tauraro pātahi he tino iti rawa te kitea o 2,4.
6x+x+1=24x
Pahekotia te 8x me -2x, ka 6x.
7x+1=24x
Pahekotia te 6x me x, ka 7x.
7x+1-24x=0
Tangohia te 24x mai i ngā taha e rua.
-17x+1=0
Pahekotia te 7x me -24x, ka -17x.
-17x=-1
Tangohia te 1 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x=\frac{-1}{-17}
Whakawehea ngā taha e rua ki te -17.
x=\frac{1}{17}
Ka taea te hautanga \frac{-1}{-17} te whakamāmā ki te \frac{1}{17} mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}