Whakaoti mō x
x=\frac{1}{2}=0.5
x=3
Graph
Pātaitai
Quadratic Equation
2x(x-3)=x-3
Tohaina
Kua tāruatia ki te papatopenga
2x^{2}-6x=x-3
Whakamahia te āhuatanga tohatoha hei whakarea te 2x ki te x-3.
2x^{2}-6x-x=-3
Tangohia te x mai i ngā taha e rua.
2x^{2}-7x=-3
Pahekotia te -6x me -x, ka -7x.
2x^{2}-7x+3=0
Me tāpiri te 3 ki ngā taha e rua.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 2\times 3}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, -7 mō b, me 3 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 2\times 3}}{2\times 2}
Pūrua -7.
x=\frac{-\left(-7\right)±\sqrt{49-8\times 3}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-\left(-7\right)±\sqrt{49-24}}{2\times 2}
Whakareatia -8 ki te 3.
x=\frac{-\left(-7\right)±\sqrt{25}}{2\times 2}
Tāpiri 49 ki te -24.
x=\frac{-\left(-7\right)±5}{2\times 2}
Tuhia te pūtakerua o te 25.
x=\frac{7±5}{2\times 2}
Ko te tauaro o -7 ko 7.
x=\frac{7±5}{4}
Whakareatia 2 ki te 2.
x=\frac{12}{4}
Nā, me whakaoti te whārite x=\frac{7±5}{4} ina he tāpiri te ±. Tāpiri 7 ki te 5.
x=3
Whakawehe 12 ki te 4.
x=\frac{2}{4}
Nā, me whakaoti te whārite x=\frac{7±5}{4} ina he tango te ±. Tango 5 mai i 7.
x=\frac{1}{2}
Whakahekea te hautanga \frac{2}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=3 x=\frac{1}{2}
Kua oti te whārite te whakatau.
2x^{2}-6x=x-3
Whakamahia te āhuatanga tohatoha hei whakarea te 2x ki te x-3.
2x^{2}-6x-x=-3
Tangohia te x mai i ngā taha e rua.
2x^{2}-7x=-3
Pahekotia te -6x me -x, ka -7x.
\frac{2x^{2}-7x}{2}=-\frac{3}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}-\frac{7}{2}x=-\frac{3}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}-\frac{7}{2}x+\left(-\frac{7}{4}\right)^{2}=-\frac{3}{2}+\left(-\frac{7}{4}\right)^{2}
Whakawehea te -\frac{7}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{7}{4}. Nā, tāpiria te pūrua o te -\frac{7}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{7}{2}x+\frac{49}{16}=-\frac{3}{2}+\frac{49}{16}
Pūruatia -\frac{7}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{7}{2}x+\frac{49}{16}=\frac{25}{16}
Tāpiri -\frac{3}{2} ki te \frac{49}{16} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{7}{4}\right)^{2}=\frac{25}{16}
Tauwehea x^{2}-\frac{7}{2}x+\frac{49}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{4}\right)^{2}}=\sqrt{\frac{25}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{7}{4}=\frac{5}{4} x-\frac{7}{4}=-\frac{5}{4}
Whakarūnātia.
x=3 x=\frac{1}{2}
Me tāpiri \frac{7}{4} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}