Whakaoti mō x
x=\frac{1}{3}\approx 0.333333333
x=0
Graph
Pātaitai
Polynomial
2x(9x-3)=0
Tohaina
Kua tāruatia ki te papatopenga
18x^{2}-6x=0
Whakamahia te āhuatanga tohatoha hei whakarea te 2x ki te 9x-3.
x\left(18x-6\right)=0
Tauwehea te x.
x=0 x=\frac{1}{3}
Hei kimi otinga whārite, me whakaoti te x=0 me te 18x-6=0.
18x^{2}-6x=0
Whakamahia te āhuatanga tohatoha hei whakarea te 2x ki te 9x-3.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}}}{2\times 18}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 18 mō a, -6 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±6}{2\times 18}
Tuhia te pūtakerua o te \left(-6\right)^{2}.
x=\frac{6±6}{2\times 18}
Ko te tauaro o -6 ko 6.
x=\frac{6±6}{36}
Whakareatia 2 ki te 18.
x=\frac{12}{36}
Nā, me whakaoti te whārite x=\frac{6±6}{36} ina he tāpiri te ±. Tāpiri 6 ki te 6.
x=\frac{1}{3}
Whakahekea te hautanga \frac{12}{36} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 12.
x=\frac{0}{36}
Nā, me whakaoti te whārite x=\frac{6±6}{36} ina he tango te ±. Tango 6 mai i 6.
x=0
Whakawehe 0 ki te 36.
x=\frac{1}{3} x=0
Kua oti te whārite te whakatau.
18x^{2}-6x=0
Whakamahia te āhuatanga tohatoha hei whakarea te 2x ki te 9x-3.
\frac{18x^{2}-6x}{18}=\frac{0}{18}
Whakawehea ngā taha e rua ki te 18.
x^{2}+\left(-\frac{6}{18}\right)x=\frac{0}{18}
Mā te whakawehe ki te 18 ka wetekia te whakareanga ki te 18.
x^{2}-\frac{1}{3}x=\frac{0}{18}
Whakahekea te hautanga \frac{-6}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
x^{2}-\frac{1}{3}x=0
Whakawehe 0 ki te 18.
x^{2}-\frac{1}{3}x+\left(-\frac{1}{6}\right)^{2}=\left(-\frac{1}{6}\right)^{2}
Whakawehea te -\frac{1}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{6}. Nā, tāpiria te pūrua o te -\frac{1}{6} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{1}{36}
Pūruatia -\frac{1}{6} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(x-\frac{1}{6}\right)^{2}=\frac{1}{36}
Tauwehea x^{2}-\frac{1}{3}x+\frac{1}{36}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{6}\right)^{2}}=\sqrt{\frac{1}{36}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{6}=\frac{1}{6} x-\frac{1}{6}=-\frac{1}{6}
Whakarūnātia.
x=\frac{1}{3} x=0
Me tāpiri \frac{1}{6} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}