Whakaoti mō x
x = \frac{3 \sqrt{481} + 93}{4} \approx 39.69878415
x = \frac{93 - 3 \sqrt{481}}{4} \approx 6.80121585
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x\left(93-2x\right)=1080
Tāpirihia te 91 ki te 2, ka 93.
186x-4x^{2}=1080
Whakamahia te āhuatanga tohatoha hei whakarea te 2x ki te 93-2x.
186x-4x^{2}-1080=0
Tangohia te 1080 mai i ngā taha e rua.
-4x^{2}+186x-1080=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-186±\sqrt{186^{2}-4\left(-4\right)\left(-1080\right)}}{2\left(-4\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -4 mō a, 186 mō b, me -1080 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-186±\sqrt{34596-4\left(-4\right)\left(-1080\right)}}{2\left(-4\right)}
Pūrua 186.
x=\frac{-186±\sqrt{34596+16\left(-1080\right)}}{2\left(-4\right)}
Whakareatia -4 ki te -4.
x=\frac{-186±\sqrt{34596-17280}}{2\left(-4\right)}
Whakareatia 16 ki te -1080.
x=\frac{-186±\sqrt{17316}}{2\left(-4\right)}
Tāpiri 34596 ki te -17280.
x=\frac{-186±6\sqrt{481}}{2\left(-4\right)}
Tuhia te pūtakerua o te 17316.
x=\frac{-186±6\sqrt{481}}{-8}
Whakareatia 2 ki te -4.
x=\frac{6\sqrt{481}-186}{-8}
Nā, me whakaoti te whārite x=\frac{-186±6\sqrt{481}}{-8} ina he tāpiri te ±. Tāpiri -186 ki te 6\sqrt{481}.
x=\frac{93-3\sqrt{481}}{4}
Whakawehe -186+6\sqrt{481} ki te -8.
x=\frac{-6\sqrt{481}-186}{-8}
Nā, me whakaoti te whārite x=\frac{-186±6\sqrt{481}}{-8} ina he tango te ±. Tango 6\sqrt{481} mai i -186.
x=\frac{3\sqrt{481}+93}{4}
Whakawehe -186-6\sqrt{481} ki te -8.
x=\frac{93-3\sqrt{481}}{4} x=\frac{3\sqrt{481}+93}{4}
Kua oti te whārite te whakatau.
2x\left(93-2x\right)=1080
Tāpirihia te 91 ki te 2, ka 93.
186x-4x^{2}=1080
Whakamahia te āhuatanga tohatoha hei whakarea te 2x ki te 93-2x.
-4x^{2}+186x=1080
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-4x^{2}+186x}{-4}=\frac{1080}{-4}
Whakawehea ngā taha e rua ki te -4.
x^{2}+\frac{186}{-4}x=\frac{1080}{-4}
Mā te whakawehe ki te -4 ka wetekia te whakareanga ki te -4.
x^{2}-\frac{93}{2}x=\frac{1080}{-4}
Whakahekea te hautanga \frac{186}{-4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}-\frac{93}{2}x=-270
Whakawehe 1080 ki te -4.
x^{2}-\frac{93}{2}x+\left(-\frac{93}{4}\right)^{2}=-270+\left(-\frac{93}{4}\right)^{2}
Whakawehea te -\frac{93}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{93}{4}. Nā, tāpiria te pūrua o te -\frac{93}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{93}{2}x+\frac{8649}{16}=-270+\frac{8649}{16}
Pūruatia -\frac{93}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{93}{2}x+\frac{8649}{16}=\frac{4329}{16}
Tāpiri -270 ki te \frac{8649}{16}.
\left(x-\frac{93}{4}\right)^{2}=\frac{4329}{16}
Tauwehea x^{2}-\frac{93}{2}x+\frac{8649}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{93}{4}\right)^{2}}=\sqrt{\frac{4329}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{93}{4}=\frac{3\sqrt{481}}{4} x-\frac{93}{4}=-\frac{3\sqrt{481}}{4}
Whakarūnātia.
x=\frac{3\sqrt{481}+93}{4} x=\frac{93-3\sqrt{481}}{4}
Me tāpiri \frac{93}{4} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}