Whakaoti mō x
x = \frac{\sqrt{109} + 7}{10} \approx 1.744030651
x=\frac{7-\sqrt{109}}{10}\approx -0.344030651
Graph
Tohaina
Kua tāruatia ki te papatopenga
x\left(5x-3\right)=4x+3
Me whakakore te 2 ki ngā taha e rua.
5x^{2}-3x=4x+3
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te 5x-3.
5x^{2}-3x-4x=3
Tangohia te 4x mai i ngā taha e rua.
5x^{2}-7x=3
Pahekotia te -3x me -4x, ka -7x.
5x^{2}-7x-3=0
Tangohia te 3 mai i ngā taha e rua.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 5\left(-3\right)}}{2\times 5}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 5 mō a, -7 mō b, me -3 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 5\left(-3\right)}}{2\times 5}
Pūrua -7.
x=\frac{-\left(-7\right)±\sqrt{49-20\left(-3\right)}}{2\times 5}
Whakareatia -4 ki te 5.
x=\frac{-\left(-7\right)±\sqrt{49+60}}{2\times 5}
Whakareatia -20 ki te -3.
x=\frac{-\left(-7\right)±\sqrt{109}}{2\times 5}
Tāpiri 49 ki te 60.
x=\frac{7±\sqrt{109}}{2\times 5}
Ko te tauaro o -7 ko 7.
x=\frac{7±\sqrt{109}}{10}
Whakareatia 2 ki te 5.
x=\frac{\sqrt{109}+7}{10}
Nā, me whakaoti te whārite x=\frac{7±\sqrt{109}}{10} ina he tāpiri te ±. Tāpiri 7 ki te \sqrt{109}.
x=\frac{7-\sqrt{109}}{10}
Nā, me whakaoti te whārite x=\frac{7±\sqrt{109}}{10} ina he tango te ±. Tango \sqrt{109} mai i 7.
x=\frac{\sqrt{109}+7}{10} x=\frac{7-\sqrt{109}}{10}
Kua oti te whārite te whakatau.
x\left(5x-3\right)=4x+3
Me whakakore te 2 ki ngā taha e rua.
5x^{2}-3x=4x+3
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te 5x-3.
5x^{2}-3x-4x=3
Tangohia te 4x mai i ngā taha e rua.
5x^{2}-7x=3
Pahekotia te -3x me -4x, ka -7x.
\frac{5x^{2}-7x}{5}=\frac{3}{5}
Whakawehea ngā taha e rua ki te 5.
x^{2}-\frac{7}{5}x=\frac{3}{5}
Mā te whakawehe ki te 5 ka wetekia te whakareanga ki te 5.
x^{2}-\frac{7}{5}x+\left(-\frac{7}{10}\right)^{2}=\frac{3}{5}+\left(-\frac{7}{10}\right)^{2}
Whakawehea te -\frac{7}{5}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{7}{10}. Nā, tāpiria te pūrua o te -\frac{7}{10} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{7}{5}x+\frac{49}{100}=\frac{3}{5}+\frac{49}{100}
Pūruatia -\frac{7}{10} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{7}{5}x+\frac{49}{100}=\frac{109}{100}
Tāpiri \frac{3}{5} ki te \frac{49}{100} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{7}{10}\right)^{2}=\frac{109}{100}
Tauwehea x^{2}-\frac{7}{5}x+\frac{49}{100}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{10}\right)^{2}}=\sqrt{\frac{109}{100}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{7}{10}=\frac{\sqrt{109}}{10} x-\frac{7}{10}=-\frac{\sqrt{109}}{10}
Whakarūnātia.
x=\frac{\sqrt{109}+7}{10} x=\frac{7-\sqrt{109}}{10}
Me tāpiri \frac{7}{10} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}