Whakaoti mō x
x = \frac{13}{6} = 2\frac{1}{6} \approx 2.166666667
x=0
Graph
Tohaina
Kua tāruatia ki te papatopenga
6x^{2}-8x=5x
Whakamahia te āhuatanga tohatoha hei whakarea te 2x ki te 3x-4.
6x^{2}-8x-5x=0
Tangohia te 5x mai i ngā taha e rua.
6x^{2}-13x=0
Pahekotia te -8x me -5x, ka -13x.
x\left(6x-13\right)=0
Tauwehea te x.
x=0 x=\frac{13}{6}
Hei kimi otinga whārite, me whakaoti te x=0 me te 6x-13=0.
6x^{2}-8x=5x
Whakamahia te āhuatanga tohatoha hei whakarea te 2x ki te 3x-4.
6x^{2}-8x-5x=0
Tangohia te 5x mai i ngā taha e rua.
6x^{2}-13x=0
Pahekotia te -8x me -5x, ka -13x.
x=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}}}{2\times 6}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 6 mō a, -13 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-13\right)±13}{2\times 6}
Tuhia te pūtakerua o te \left(-13\right)^{2}.
x=\frac{13±13}{2\times 6}
Ko te tauaro o -13 ko 13.
x=\frac{13±13}{12}
Whakareatia 2 ki te 6.
x=\frac{26}{12}
Nā, me whakaoti te whārite x=\frac{13±13}{12} ina he tāpiri te ±. Tāpiri 13 ki te 13.
x=\frac{13}{6}
Whakahekea te hautanga \frac{26}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=\frac{0}{12}
Nā, me whakaoti te whārite x=\frac{13±13}{12} ina he tango te ±. Tango 13 mai i 13.
x=0
Whakawehe 0 ki te 12.
x=\frac{13}{6} x=0
Kua oti te whārite te whakatau.
6x^{2}-8x=5x
Whakamahia te āhuatanga tohatoha hei whakarea te 2x ki te 3x-4.
6x^{2}-8x-5x=0
Tangohia te 5x mai i ngā taha e rua.
6x^{2}-13x=0
Pahekotia te -8x me -5x, ka -13x.
\frac{6x^{2}-13x}{6}=\frac{0}{6}
Whakawehea ngā taha e rua ki te 6.
x^{2}-\frac{13}{6}x=\frac{0}{6}
Mā te whakawehe ki te 6 ka wetekia te whakareanga ki te 6.
x^{2}-\frac{13}{6}x=0
Whakawehe 0 ki te 6.
x^{2}-\frac{13}{6}x+\left(-\frac{13}{12}\right)^{2}=\left(-\frac{13}{12}\right)^{2}
Whakawehea te -\frac{13}{6}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{13}{12}. Nā, tāpiria te pūrua o te -\frac{13}{12} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{13}{6}x+\frac{169}{144}=\frac{169}{144}
Pūruatia -\frac{13}{12} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(x-\frac{13}{12}\right)^{2}=\frac{169}{144}
Tauwehea x^{2}-\frac{13}{6}x+\frac{169}{144}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{13}{12}\right)^{2}}=\sqrt{\frac{169}{144}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{13}{12}=\frac{13}{12} x-\frac{13}{12}=-\frac{13}{12}
Whakarūnātia.
x=\frac{13}{6} x=0
Me tāpiri \frac{13}{12} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}