Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

6x^{2}-4x-4=x
Whakamahia te āhuatanga tohatoha hei whakarea te 2x ki te 3x-2.
6x^{2}-4x-4-x=0
Tangohia te x mai i ngā taha e rua.
6x^{2}-5x-4=0
Pahekotia te -4x me -x, ka -5x.
a+b=-5 ab=6\left(-4\right)=-24
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 6x^{2}+ax+bx-4. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-24 2,-12 3,-8 4,-6
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -24.
1-24=-23 2-12=-10 3-8=-5 4-6=-2
Tātaihia te tapeke mō ia takirua.
a=-8 b=3
Ko te otinga te takirua ka hoatu i te tapeke -5.
\left(6x^{2}-8x\right)+\left(3x-4\right)
Tuhia anō te 6x^{2}-5x-4 hei \left(6x^{2}-8x\right)+\left(3x-4\right).
2x\left(3x-4\right)+3x-4
Whakatauwehea atu 2x i te 6x^{2}-8x.
\left(3x-4\right)\left(2x+1\right)
Whakatauwehea atu te kīanga pātahi 3x-4 mā te whakamahi i te āhuatanga tātai tohatoha.
x=\frac{4}{3} x=-\frac{1}{2}
Hei kimi otinga whārite, me whakaoti te 3x-4=0 me te 2x+1=0.
6x^{2}-4x-4=x
Whakamahia te āhuatanga tohatoha hei whakarea te 2x ki te 3x-2.
6x^{2}-4x-4-x=0
Tangohia te x mai i ngā taha e rua.
6x^{2}-5x-4=0
Pahekotia te -4x me -x, ka -5x.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 6\left(-4\right)}}{2\times 6}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 6 mō a, -5 mō b, me -4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 6\left(-4\right)}}{2\times 6}
Pūrua -5.
x=\frac{-\left(-5\right)±\sqrt{25-24\left(-4\right)}}{2\times 6}
Whakareatia -4 ki te 6.
x=\frac{-\left(-5\right)±\sqrt{25+96}}{2\times 6}
Whakareatia -24 ki te -4.
x=\frac{-\left(-5\right)±\sqrt{121}}{2\times 6}
Tāpiri 25 ki te 96.
x=\frac{-\left(-5\right)±11}{2\times 6}
Tuhia te pūtakerua o te 121.
x=\frac{5±11}{2\times 6}
Ko te tauaro o -5 ko 5.
x=\frac{5±11}{12}
Whakareatia 2 ki te 6.
x=\frac{16}{12}
Nā, me whakaoti te whārite x=\frac{5±11}{12} ina he tāpiri te ±. Tāpiri 5 ki te 11.
x=\frac{4}{3}
Whakahekea te hautanga \frac{16}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x=-\frac{6}{12}
Nā, me whakaoti te whārite x=\frac{5±11}{12} ina he tango te ±. Tango 11 mai i 5.
x=-\frac{1}{2}
Whakahekea te hautanga \frac{-6}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
x=\frac{4}{3} x=-\frac{1}{2}
Kua oti te whārite te whakatau.
6x^{2}-4x-4=x
Whakamahia te āhuatanga tohatoha hei whakarea te 2x ki te 3x-2.
6x^{2}-4x-4-x=0
Tangohia te x mai i ngā taha e rua.
6x^{2}-5x-4=0
Pahekotia te -4x me -x, ka -5x.
6x^{2}-5x=4
Me tāpiri te 4 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
\frac{6x^{2}-5x}{6}=\frac{4}{6}
Whakawehea ngā taha e rua ki te 6.
x^{2}-\frac{5}{6}x=\frac{4}{6}
Mā te whakawehe ki te 6 ka wetekia te whakareanga ki te 6.
x^{2}-\frac{5}{6}x=\frac{2}{3}
Whakahekea te hautanga \frac{4}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}-\frac{5}{6}x+\left(-\frac{5}{12}\right)^{2}=\frac{2}{3}+\left(-\frac{5}{12}\right)^{2}
Whakawehea te -\frac{5}{6}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{5}{12}. Nā, tāpiria te pūrua o te -\frac{5}{12} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{5}{6}x+\frac{25}{144}=\frac{2}{3}+\frac{25}{144}
Pūruatia -\frac{5}{12} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{5}{6}x+\frac{25}{144}=\frac{121}{144}
Tāpiri \frac{2}{3} ki te \frac{25}{144} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{5}{12}\right)^{2}=\frac{121}{144}
Tauwehea x^{2}-\frac{5}{6}x+\frac{25}{144}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{12}\right)^{2}}=\sqrt{\frac{121}{144}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{5}{12}=\frac{11}{12} x-\frac{5}{12}=-\frac{11}{12}
Whakarūnātia.
x=\frac{4}{3} x=-\frac{1}{2}
Me tāpiri \frac{5}{12} ki ngā taha e rua o te whārite.