Whakaoti mō x
x=2
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x+5x+15=6x-4\left(3x-10\right)+1
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te x+3.
7x+15=6x-4\left(3x-10\right)+1
Pahekotia te 2x me 5x, ka 7x.
7x+15=6x-12x+40+1
Whakamahia te āhuatanga tohatoha hei whakarea te -4 ki te 3x-10.
7x+15=-6x+40+1
Pahekotia te 6x me -12x, ka -6x.
7x+15=-6x+41
Tāpirihia te 40 ki te 1, ka 41.
7x+15+6x=41
Me tāpiri te 6x ki ngā taha e rua.
13x+15=41
Pahekotia te 7x me 6x, ka 13x.
13x=41-15
Tangohia te 15 mai i ngā taha e rua.
13x=26
Tangohia te 15 i te 41, ka 26.
x=\frac{26}{13}
Whakawehea ngā taha e rua ki te 13.
x=2
Whakawehea te 26 ki te 13, kia riro ko 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}