Whakaoti mō x
x=39-3y
Whakaoti mō y
y=-\frac{x}{3}+13
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x+4y-62-x=y-23
Tangohia te x mai i ngā taha e rua.
x+4y-62=y-23
Pahekotia te 2x me -x, ka x.
x-62=y-23-4y
Tangohia te 4y mai i ngā taha e rua.
x-62=-3y-23
Pahekotia te y me -4y, ka -3y.
x=-3y-23+62
Me tāpiri te 62 ki ngā taha e rua.
x=-3y+39
Tāpirihia te -23 ki te 62, ka 39.
2x+4y-62-y=x-23
Tangohia te y mai i ngā taha e rua.
2x+3y-62=x-23
Pahekotia te 4y me -y, ka 3y.
3y-62=x-23-2x
Tangohia te 2x mai i ngā taha e rua.
3y-62=-x-23
Pahekotia te x me -2x, ka -x.
3y=-x-23+62
Me tāpiri te 62 ki ngā taha e rua.
3y=-x+39
Tāpirihia te -23 ki te 62, ka 39.
3y=39-x
He hanga arowhānui tō te whārite.
\frac{3y}{3}=\frac{39-x}{3}
Whakawehea ngā taha e rua ki te 3.
y=\frac{39-x}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
y=-\frac{x}{3}+13
Whakawehe -x+39 ki te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}